PHD Thesis

Development of a coagulation coefficient measurement device (CMD) for the measurement of the coagulation coefficient of nanoparticles in the size range from 10 to 1000 nm

Dipl.-Ing. Bernhard Andreas Heiden Graz, 7th of January 2006

written at the

Institute for Internal Combustion Engines and Thermodynamics Traffic and Environment Section Graz University of Technology

Advisors:

Ao.Univ.-Prof. Dipl.-Ing. Dr. techn. Peter Johann Sturm Adjunct Prof. Dr. Athanasios G. Konstandopoulos

Acknowledgements

My sincerest thanks go to all who have contributed to this work. First of all is Ao. Univ.-Prof. Dr. techn. Peter Sturm who had the initial idea of investigating this very fundamental problem of aerosol technology. He was the primary person responsible for the sponsorship by the FVT (Forschungsgesellschaft für Verbrennungskraftmaschinen und Thermodynamik), which made the experiments, necessary for this kind of basic research¹, possible. His generosity with time insight and friendship both personal and professional are well known and it is to him I am most indebted. I am also indebted to Adjunct Prof. Athanasios Konstandopoulos who was willing to be my associate advisor, in spite of his very busy schedule, especially as he is one of the experts in this reemerging field of nanoparticle research. The head of the Institute for Internal Combustion Engines and Thermodynamics and all my colleagues are due my thanks, especially Univ.-Prof. Dr. techn. Rudolf Pischinger, em. Univ.-Prof. Dr. techn. Helmut Eichelseder, Ao.univ. Prof. Dr. Raimund Almbauer, Dipl.- Ing. Dr. Gerhard Pretterhofer for discussing ideas, Dipl.-Ing. Dr. Hannes Rodler for helping with instruments and social integration in the group as well as Dipl.-Ing. Michael Bacher, my co researchers, Mag. Dr. Dietmar Öttl, Dipl.-Ing. Christian Kurz, Mag. Marlene Hinterhofer, Mag. Silvia Vogelsang and the secretary Sabine Hartinger, Sabine Minarik and Alexandra Stiermair. I enjoyed also the cooperation with the group under the direction of Univ.-Prof. Dr. techn-Stefan Hausberger especially Dipl.-Ing. Martin Rexeis, Dipl.-Ing. Thomas Vuckovic, Dr. Jürgen Blasnegger, Dipl.-Ing. Michael Zallinger. My thanks also go to Dipl.-Ing. Dieter Engler, who introduced me in the use of the SMPS and CPC and all the other particulate measurement equipment from the institute as well as to the former assistant Dipl.-Ing. Dr. Mario Ivanišin for scientific exchange. Additionally I would like to thank the staff of the

¹ This sampling system has been completely founded by the FVT (Research society of combustion engines and thermodynamics) at the Institute for Internal Combustion Engines and Thermodynamics of the University of Technology Graz.

laboratory for the help in the mechanical setup, especially Siegfried Gimpl, Günter Rumpf for manufacturing parts of the CMD and indeed all others who are to numerous to mention.

Dipl.-Ing. Helmut Wurm from National Instruments is due a special thank for fruitful, repeated and personal assistance concerning the Labview Hard- and Software integration. My diploma students Dipl.-Ing. Emil Bakk and Bernd Brugger are due thanks for having supported the work of the CMD by their enthusiasm and work around the clock to prepare the measurements in Munich and at the AVL Graz. Dr. Armin Messerer is due thanks for the measurements at the TU-Munich. Dr. Schindler of the AVL is due thanks for the support with the measurements with the CAST. My old friend Dipl.-Ing. Günter Jaritz is due many thanks for building the electrical circuits of the CMD and discussing ideas as also for measurement assistance in Munich. I am also indebted to Dr. Werner Schaffenberger who helped me in the theoretical segment in clarifying the mathematical concepts. My thanks also go to Mr. Steven Fowler, M.H. for editing the text for American English.

Last but not least, my personal thank goes to my wife, Bianca, who listened to my long discussions about this topic, and who continually gave me motivation. As she is expecting at the time of this writing our first child who is according to the last ultra sound a baby. I dedicate this work to our son.

Kurzfassung

Da die Luftverschmutzung von Nanopartikeln im Größenbereich von 10 bis 1000 nm einen großen Einfluss auf die menschliche Gesundheit hat und der Dispersionsprozess von der Emissionsquelle bis zur Immissionssenke noch nicht sehr gut prognostiziert werden kann, ist es notwendig das Wachstumsverhalten von Aerosolen weiter zu untersuchen. Zu diesem Zweck wurde ein mobiles Koagulationsmessgerät (CMD) entwickelt. Dieses dient dazu den Koagulationskoeffizienten K von Aerosolen mit einem Durchmesser zwischen 10 und 1000 nm zu messen. Dabei ist K ist ein grundlegendes Maß für das Wachstum von Aerosolen. Ein konstanter Konzentrationsaerosolreaktor, der aufgrund des veränderlichen Volumens unterschiedliche Größenverteilungsmessungen ein und desselben Aerosols ermöglicht, wurde zum ersten Mal gebaut, getestet und mit LABVIEW prozessautomatisiert. Eine bestehende Theorie, die auf der allgemeinen dynamischen Gleichung (GDE) basiert, wurde für das CMD angepasst und, unter Berücksichtigung von Koagulation und Diffusion, auf die Form einer speziellen logistischen Gleichung gebracht. Die Anzahlkonzentrationsabnahmemessung erlaubt zusammen mit der entwickelten Theorie die Auswertung des Koagulationskoeffizienten mit einer Reihe von verschiedenen Methoden. Die sich daraus ergebenden Koagulationskoeffizienten sind weitgehend kohärent mit Werten aus der Literatur. Die zwei Konzentrationsmessmethoden, kontinuierlichen ergaben in Bezug auf die zwei diskontinuierlichen Methoden für den Grenzfall kurzer Zeiten einen im Mittel um den Faktor 5 höheren Koagulationskoeffizienten. Die Ursache könnten Fluktuationen des Koagulationskoeffizienten oder eine unterschiedliche Aerosolverdünnung Zukünftiger sein. Forschungsinhalt ist die Anwendung der Messmethoden des CMD auf die Unterscheidbarkeit von Aerosolen, Partikelform und einen allgemeinen Koagulationskoeffizienten.

Abstract

As air pollution of nanoparticles in the size range of 10 to 1000 nm has a high impact on human health and the dispersion of these particles can not be predicted very well, clarification of growth of aerosols is necessary. For this purpose a mobile coagulation measurement device (CMD) was developed. It aimed at measuring of the coagulation coefficient K of aerosols in the diameter size range between 10 and 1000 nm, where K is a basis quantity for the kinetic of aerosols. A constant concentration aerosol reactor has been built, tested and automated with LABVIEW for the first time, allowing for a variable volume and time dependent size distribution or concentration measurements of the same aerosol. A theory was adapted for the CMD based on the fundamental general dynamics equation (GDE), which reduces to the form of a special logistic equation, taking coagulation and diffusion into account. The measurement of the number concentration decay and of their distribution allows, together with the developed theory, for the evaluation of the coagulation constant with a number of different methods. The resulting coagulation coefficients reflected the values from the literature. The two continuous concentration measurement methods yielded, compared to the two discontinuous methods, for the limiting case of short times, an average 5 times higher coagulation coefficient. The cause might have been fluctuations of the coagulation coefficient or the influence of different aerosol dilution. Future research areas are the application of the measurement methods of the CMD to the distinction of aerosols, particle form and to a general coagulation coefficient.

CONTENT

Acknowledgen	nents	3
Kurzfassung		5
Abstract		7
CONTENT		9
Introduction		13
List of principa	al symbols	15
INDICES		20
Theory		21
Problem for	mulation	21
Aerosol char	racterization	22
I.1.1 Or	the lognormal size distribution interpretation	22
I.1.2 Ap	oplication to fractal aggregates	23
I.1.3 Th	e lognormal size distribution	24
Aerosol dyn	amics relevant for the coagulation coefficient	25
I.1.4 Ge	eneral Dynamics Equation (GDE)	25
I.1.5 Di	ffusions coefficient D	28
I.1.6 Co	pagulation coefficient K	29
I.1.6.1	Smoluchowski equation	29
I.1.6.2	Approximation of applicability of the Smoluchowski Equation	30
I.1.7 De	etermination of the coagulation coefficient K	32
I.1.7.1	Theory of loss by coagulation and diffusion	32
I.1.7.2	Method (1) - Constant Volume Batch Reactor (CV) for short times	34
I.1.7.3	Method (2) - Constant Volume Batch Reactor (CV) for long times	36
I.1.7.4	Method (4) - Constant Concentration Reactor (CC) for long times	36
I.1.7.5	Method (3) - Constant Concentration Reactor (CC) for short times	39
I.1.8 Pr	edicted application of the measurement of the quantity K	41

I.1.8.1	Fractal dimension determination	
I.1.8.2	Primary particle diameter	
Description of	the CMD	
Principle of	operation of the CMD	
Setup of the	CMD	
I.1.9 S	ystem setup	
I.1.9.1	Standard SMPS system	
I.1.9.2	CMD system	
I.1.10	Settler	
I.1.11	Effective flow rate	
I.1.11.	1 Settler volume determination	
I.1.11.	2 Total time calculation	
I.1.11.	3 Pressure drop	
I.1.11.	4 Pressure and temperature dependence	
I.1.11.	5 Gas dependence	
Operation c	f the CMD	
I.1.12	Path concept	
I.1.13	Operation concept	
I.1.13.	1 Complex operation types	
I.1.13.	2 Simple operation types	
I.1.14	Labview software implementation	
I.1.14.	1 Structure	
I.1.14.	2 Main menu	
I.1.14.	3 Initialization	
I.1.14.	4 Measurement	
Fundamenta	al considerations	
I.1.15	Reactor characterization	
I.1.16	Residence times	
I.1.16.	1 Overall residence time for measurement	
I.1.16.	2 Settler	
I.1.16.	3 DMA	
I.1.16.	4 CPC	
I.1.17	Dilution	

I.1.17.1	Dilution in the CPC	87
I.1.17.2	2 Dilution due to incomplete filling	88
I.1.18	Impaction, deposition and other effects	88
Measurements	of the coagulation coefficient with the CMD	91
Monodisper	se aerosols	91
I.1.19	Control measurement	95
I.1.20	Results: Smoluchowski coagulation plot	96
Polydisperse	e aerosols	97
I.1.21	Measurement of the coagulation coefficient of polydisperse aersols by m	neans
of a size of	listribution measurements - Incense Measurements	97
I.1.22	Measurement of the coagulation coefficient of polydisperse aersols by m	neans
of a numb	per distribution measurement	. 101
I.1.22.1	Polydisperse Coagulation I (Method 4)	. 101
I.1.22.2	Polydisperse Coagulation II (Method 3)	. 105
Conclusions		. 111
Theory of co	pagulation and diffusion	.111
Coagulation	Measurement Device (CMD)	. 112
Coagulation	coefficient	. 114
Outlook		. 115
Literature		. 117
FIGURES		. 121
TABLES		. 127
INDEX		. 131
Appendix A	Detailed specifications	. 133
Tubes		. 133
Detailed res	idence times	. 134
Settler		. 136
Appendix B	Visual Basic (VB) programs determining the lognormal size distribution	. 137
Appendix C	Labview 7.1 software implementation of the CMD	. 141
Detailed ma	in front panel	. 141
Software his	erarchy	. 141
CMD Stepp	er motor control	. 145
Software va	riables in the Labview 7.1 implementation	. 146

Devices and corresponding programs152

Introduction

The coagulation measurement device (CMD) is the core unit referred to in this work. 1.) The aim of such an instrument is to measure the kinetics of coagulation of nanoparticle aerosols. It was my aim to build a portable instrument for measuring the coagulation coefficient in the nanoparticle size range. In the literature, measurements of the coagulation of nanoparticles were often made during the last century. The measurements were made mainly with particle number concentration measurements (Husar 1971; Rooker and Davies 1979) or even with particle number size distribution measurements (Schnell and others 2004). Some kind of closed batch reactor is the usual method of measuring the coagulation kinetics, because an aerosol cannot easily be kept constant in concentration. For example large bags were often used with a large volume to surface ratio, allowing for increasing neglect of wall diffusion. All of these methods show the problem of being physically very large and, therefore, not portable. Scaling down the size of the reactor, the aerosol volume sampled cannot be neglected compared to the volume of the settler². For a closed, constant volume reactor this means that the pressure drops. To compensate for this I developed the constant concentration reactor³ allowing for a theoretically constant thermodynamic state with respect to pressure and temperature.

The experimental work for the building of the CMD with a constant concentration reactor and the commercial SMPS System (Scanning Mobility Particulate Sizer System) from TSI has been done in the Laboratory of Internal Combustion Engines and Thermodynamics at the University of Technology in Graz from 2004 to 2005, where the programming and process automation was implemented with the Laboratore.

² Aerosol batch reactor or container for coagulation (in general any reaction) and subsequent particle concentration measurement.

³ Constant concentration refers to an ideal (not real existing) state of no coagulation and no deposition to the reactor walls.

There have been made two diploma theses on the CMD (Bakk 2005; Brugger 2005) looking at the fail-safe analysis of the CMD, and on routines for the normal measurement mode of the CMD.

This thesis consists of four main chapters. The first refers to the theoretical background of the system, the underlying physics, the theory of simultaneous coagulation and diffusion first adapted for the concept of the constant concentration reactor and its derivation for practical application.

The second chapter contains the description of the CMD. What it consists of, the basic components, experiments related to the build CMD and application diagrams when measuring with the CMD to keep overview of the basics of the CMD system. The principles of operation are explained as well as the practical use of the Labview software I developed for the CMD during development.

The third chapter contains a selection of experiments demonstrating the principal use of the CMD for different concepts of measurement the coagulation coefficient. Main applications are the measurement of the mono- and polydisperse coagulation coefficient, with different methods.

The listing is not complete as the CMD is intended to be used as research instrument. E.g. with additional hardware, the temperature dependency or additional reactor type equivalent measurements⁴ could be investigated.

In the Appendices additional information is given for the detailed specifications of some key elements of the CMD, visual basic programs for calculating the logarithmic normal distribution from experimental data and an overview over the Labview program hierarchy.

⁴ Other than the constant concentration reactor; e.g. Continuously Stirred Tank Reactor (CSTR) with variable residence time (see section I.1.18).

List of principal symbols

Var	Description	Unit
#	Particle(s)	~
[]	Denotes units inside the brackets	~
Ā	Lacunarity	~
А	"Area"	~
	Aerosol instrument manager software of the standard SMPS	
AIMS	system (e.g. DMA 3081 and CPC 3010)	~
A _{SETTLER}	Inner surface area of the settler inside	m^2
ASF	Flow sensor ASF1430 from Sensirion	~
ASP	Differential pressure sensor from Sensirion ASP1400	~
В	Second virial coefficient	~
bool	Boolean	~
	Cunningham-Knudsen-Weber-Millikan correction factor for the	
C	diffusion coefficient	~
	Soot particle generator for production of defined particle number concentrations from Matter-Engineering	-
CAST	www.matter-engineering.com	~
CC	Cumulative Counts since the last measurement from the CPC	-
CC	Constant Concentration reactor	~
CMD	Coagulation measurement device	~
CNC	Condensation nuclei counter	~
CPC	Condensation particle counter	~
C _s	Terminal settling velocity	m/s
c _{sf}	Terminal settling velocity of fractal particles	m/s
CSTR	Continuously Stirred Tank Reactor	~
СТ	Cumulative Time of the last measurement from the CPC	S
CV	Constant volume reactor	~
D	Diffusion coefficient	m ² /s
D_{f}	Fractal dimension	~
d _{i settler}	Inner diameter of the settler	m
dm	Differential mass	kg
d _m	Mean settler diameter	m
	Collision diameter – distance between the centers of two	
d _m	molecules	m
DMA	Differential mobility analyzer	~
dN	Differential particle concentration	$\#/cm^3$
dN0	Differential particle concentration of CPC measurement	$\#/cm^3$
dN00	Differential particle concentration of CPC dilution air	$\#/cm^3$
$d_{o_SETTLER}$	Outer diameter of the settler	m

Var	Description	Unit
D _p	Diffusion coefficient of particle with diameter d _p	m^2/s
d _p	Diameter of Particle	nm
\dot{D}_{p0}	Diffusion coefficient of particle with primary diameter d_{p0}	m^2/s
d_{p0}	Diameter of primary particle of a fractal aggregate	nm
dp ₁	Pressure drop impactor (cm H2O)	cm H2O
dp ₂	Pressure drop across the bypass orifice	mm H20
dp ₃	Differential pressure of ASP1400 (CMD settler)	Ра
d _{pg}	Geometric mean diameter of particle	nm
	Diameter of Particle MAXimum that could be measured with	
dp _{max}	SMPS	nm
	Diameter of Particle MINimum that could be measured with	
dp_{min}	SMPS	nm
DRVi	i=13 manual needle valves	~
dV	Differential volume	cm ³
	Evaluation Kit EK-H2 from Sensirion; microcontroller access	
EK-H2	kit for the humidity sensors. The sensor SHT75 was used.	~
Ft	With of one fold of the settler	m
Fz	Number of fold of the settler	~
g	Gravitational constant	m/s^2
GDE	General dynamics equation	~
Gilibrator 2	Calibration bubble flow meter from Sensidyne	~
GMEAMOD	Variable in the CMD program for setting the operation	~
h	Diffusion layer thickness	m
	Company for the used stepper motor hardware	
HASOTEC	www.hasotec.com	~
HCX001A6V	Absoluter pressure sensor from SensorTechnics	~
Ι	Particle current according to nucleation law	
INNOFLEX	Company for settler production <u>www.faltenbalg.de</u>	~
K	Coagulation coefficient	$cm^3_gas/(\#*s)$
k	Boltzmann constant: $k=R/N_A=1.38*10^{-23}$	J/K
K _a	Apparent coagulation coefficient	$cm^3_gas/(\#*s)$
	Apparent coagulation coefficient for constant concentration	2
K _{ac}	reactor	cm ³ _gas/(#*s)
K _m	Mean coagulation coefficient	cm ² _gas/(#*s)
K _p	Coagulation coefficient of particle with diameter d _p	cm ³ _gas/(#*s)
K_{p0}	Coagulation coefficient of primary particle with diameter d_{p0}	cm ³ _gas/(#*s)
L	Length	Length
L	Particle wall diffusion frequency	1/s
L_Settler_min	Settler minimum size due to folds	m
	Particle wall diffusion frequency for constant concentration	
L ₀	reactor	1/s
L _{0m}	Mean L ₀	1/s
LABVIEW	Labview 7.1 Software from National Instruments <u>www.ni.com</u>	~
L _{DMA}	DMA Characteristic Length	m
L _{max}	Settler maximum actual size	m
L_{min}	Settler minimum actual size	m
LMS	Least mean squares fit	~
lpm	Liter per minute	~

Var	Description	Unit
m.v.	Measurement value	~
	Mathematic software package from Mathsoft	
Mathcad®	www.mathsoft.com	~
Matter-	www.matter-engineering.com	
Engineering		~
MDP	Monodisperse particle diameter	nm
MG	Molecular weight	kg/mol
Ν	Number of scan intervals	-
Ν	Particle concentration	$\#/cm^3$
N_{∞}	Total particle concentration	$\#/cm^3$
$n(v),n(\overline{v})$	Volume distribution	#/(L ³ _particle*L ³ _gas)
n ₀	Initial number concentration	$\#/cm^3$
N_0	Initial total particle concentration	#/cm ³
N _A	Avogadro constant $N_A = 6.022 \times 10^{23}$	#_gas/mol
NBR	Antistatic rubber mixture of the settler from INNOFLEX	~
n _d	Particle size distribution function	$\#/(cm^{3}*nm)$
NI	National Instruments (see Labview)	~
N _n	Number of particles in a fractal aggregate	~
N _p primary	Total number of primary particles in volume V	~
NSM	number of single measurements	-
n _{tot}	Total particle counts since last measurement	#
operation	A series of paths see I 1 13	~
n	Pressure	mhar
p no	Ambient air pressure	mbar
\mathbf{p}_{0}	Absolute pressure (SMPS sensor)	mbar
p ₁	Absolute pressure sensor CMD (settler)	mbar
p2 path	Valve setting leading to a fluid path in the CMD see I 1 12	mou
path	Standard pressure (1013mbar)	mbar
$\mathbf{p}_{\mathbf{s}}$	Effective constant flow rate of the settler as a function of the	moai
0	stepper motor velocity	lpm=l/min
× R	Gas constant: R=8 31441	I/(mol*K)
r^2	Pearson's regression coefficient	~
1	Is proportional to dN. The actual particle concentration of the	
r _d	CPC	$\#/cm^3$
Re	Revnolds number	~
Rev	Local Reynolds number	~
rghx	Command code SMCard SM41 (HASOTEC)	~
ľ: DMA	DMA Inner Radius	m
	DMA Outer Radius	m
ROTDRV1	Rotations of needle valve DRV1	Rot(ations)
rom	Rotations per minute	~
R\$232	Serial interface	~
RSV	Unidirectional valve	~
R5V S	Surface area	m^2
S S/W	Surface area to volume ratio of the sattler	m^2/m^3
S/V So	Surface area to volume fatio of the settler	111 / 111
	Standard aubia continutor	~
SCCIII	Stanuaru cubic centimeter	~
501	Scan 1 lime in seconds. Scan time for one size distribution	S

Development of the CMD for the coagulation coefficient measurement

Var	Description	Unit
	measurement	
SEM	Scanning electron microscopy	~
Sensidyne	www.sensidyne.com	~
Sensirion	www.sensiorion.com	~
SensorTechnics	www.sensortechnics.com	~
sff	Safety factor for increasing filling time	~
SHT75	Humidity sensor form Sensirion (see also Sensirion)	~
Sh _x	Local Sherwood number	~
SM-41-PCI	PCI Interface card from HASOTEC for stepper motor control	~
SMPS	Scanning mobility particulate sizer	~
	Standard SMPS system from TSI containing the classifier 3081,	
SMPS 3081	the DMA 3080 and the CPC 3010	~
SPFA	Speed factor for the stepper motor	~
t	Time	s, min
Т	Temperature	°C
T_1	Cabinet temperature	°C
T_2	Sheath flow temperature	°C
T ₃	Bypass flow temperature	°C
T_4	CPC Condenser temperature	°C
T ₅	CPC Saturator temperature	°C
T ₆	ASP temperature	°C
T ₇	CMDC temperature Pt100	°C
T ₈	CMD Balg: Humidity temperature sensor on EK-H2	°C
t _{CLEAN}	Time for STEP Cleaning of the CMD Balg	S
t _{COAGUL}	Time for STEP coagulation	S
	Residence time of the CPC 3010 and the standard tubing from	
td	the SMPS DMA to the SMPS CPC.	S
td'	Calculated td	S
2	Is the residence time in the SMPS DMA from the AIMS	
tf	software tf is the same as τ_3	S
t _{FILL}	Time for STEP filling the probe into the CMD Balg	S
t _{MEAS}	Time for STEP Measurement with the SMPS	S
T _s	Standard temperature (20°C)	°C
TSI	TSI Aerosol Instrumentation Company (<u>www.tsi.com</u>)	~
t _{total}	Time total	S
	Total time of measurement x; total time of all measurements of	
t _{total}	one settler probe	min
u LUV	Velocity, bulk velocity	L/time ;m/s
UV	Ultraviolet radiation	\sim 3
V	Volume of particle	m ³
V _	(Gas) Volume	m ³ , length ³
\mathbf{V}, \mathbf{V}	Volume	L^{3}
V/S	Volume to Surface area ratio of the settler	m^{3}/m^{2}
V ₀	Volume of primary particle of an fractal aggregate	m
\mathbf{V}_0	Volume of air in the path between SMPS DMA & SMPS CPC	1
V	volume of air in the path between SMPS DMA & SMPS CPC	1
v _{0S}	according to Anvis software and standard setting	1
v 0S'	Calculated V _{0S}	1

Var	Description	Unit
\mathbf{V}_1	Volume of air in the path between settler and SMPS in	1
V_2	Volume of air inside the SMPS between input and DMA	1
V_3	Volume inside the SMPS DMA	1
V_4	Volume of air in the path between SMPS and CPC for the CMD	1
	Volume of air in the path between settler and CPC for settler	
V_5	measurement mode without DMA volume	1
	Volume of gas in the CPC 3010 in the sample flow line between	
V_6	inlet and laser particle measurement in the CPC	1
V_7	(Total) Effective volume in the settler that can be pressed out	1
	Total gas volume of the settler or when the settler is in the end	
V_{70}	switch position on the bottom.	1
V_{7min}	Settler rest volume when empty	1
	Volume of air in the path between settler and CPC in (part of	
V_9	path 4)	1
\mathbf{v}_{b}	Bulk velocity of the particles	m/s
V _{BALG}	Velocity of "BALG"	Upm
\mathbf{v}_{d}	Minimum volume	1
Vi	i=18 magnetic two way valves	~
vi	Virtual instrument – this is a program module in Labview	~
vi'	See vi	~
V_{max}	Maximum volume of the settler	1
VMi	i=12 manual two way ball valves	~
V_{min}	Effective minimum volume of the settler	1
V _{MOT}	Motor control velocity (from SM card) - appr. motor velocity	Upm
Vn	(Gas) Flow rate	l/min
V_{n1}	Sample Flow rate SMPS	lpm
V _{n2}	Sheath Flow rate SMPS	lpm
V_{n3}	Bypass Flow rate SMPS	lpm
V _{p4s} V _{p4}	Flow rate ASF Sensor	seem lpm
V_{p4s} , V_{p4}	Flow rate of the CPC dilution air	Lpm
V _{р6} V.7	Identical with O	lnm
• p/ x:	i=1,3 Cartesian coordinates x y z	L (length)
v	Transformation factor between dN and $dN/dlog(d)$	~
Aq	Company for machine components and elements	
ZIMM	www.zimm-austria.com	~
	Difference between Lawr and Lawr	m
a	Leakage ratio	~
ao	Contraction number	~
ß	Particle transfer coefficient	m/s
р ß	Local particle transfer coefficient	m/s
β β	Collision frequency function	$cm^3 cm^3 (\#*s)$
s h	Elow rote percentage increase	cm _gas/(#*s)
0	Polotius humiditu sansar CMD	~
Ψ_1	Settler correction of defer real volume	70 [time/times]
γ	Settier correction of d_m for real volume	[ume/time]
γ	I otal time ratio: t/t _{total}	~
ĸ	Differential pressure correction factor	~
λ	Mean tree path of the gas	m
μ	Dynamic viscosity	kg/(m*s)

Development of the CMD for the coagulation coefficient measurement

Var	Description	Unit
ρ _α ρ	Gas density	kg/m ³
$\rho_{\rm L}$	Density of air	kg/m ³
$ ho_p$	Particle density	kg/m ³
$\sigma_{\rm g}$	Geometric standard deviation	~
τ	Residence time	S
$ au_{CPC}$	Residence time in the CPC 3010	S
$ au_i$	Residence time according to V_i i=06;9	S
	Total residence time for settler measurement from the settler to	
$ au_{tot}$	the CPC	S
	Total residence time for settler measurement from the DMA to the CPC for SMPS measurement setup (standard SMPS	
τ_{tot0}	measurement)	S
	Total residence time for settler measurement from the DMA to	
τ_{trans}	the CPC for CMD measurement setup	S
$ au_{\mathrm{I}}$	Time d _p is shifted to concentration because of residence time between DMA and CPC	S
$ au_{II}$	Time the raw data are shifted to the beginning of measurement mode	S
ζ	Sample to sheath flow volume ratio of the DMA	~

INDICES

Index	Description
В	Bulk
D	Distribution
F	Fractal
L	Leakage, air
M, m	Mean
max	Maximum
min	Minimum
Р	Particle
P0	Referring to primary particle
s,S	Standard
tot	Total
u	Infinite volume

Theory

Problem formulation

Combustion generated nanoparticles are a main concern for air pollution and its health risks. There are still open questions about the *residence time*⁵ in the atmosphere and the *laws of growth* of nanoparticles, which are typically found in the transition regime⁶ in the size range between approximately 10 nm and one micrometer. It is not well understood in a theoretical sense, especially concerning coagulation. For this problem there are mainly two approximations at the end of this range, one of statistical thermodynamics and one deduced out of the Einstein approximation for Brownian motion (Friedlander 2000).

Both regimes together can be expressed as coagulation kernel β or K in the Smoluchowski equation in the transition regime by interpolation first accomplished by Fuchs (Fuchs 1989).

Measurement of physical quantities in the transition regime is both important for understanding the underlying physics and the atmospheric processes. Experimental investigations of particle evolution are available for special cases of aerosols and a limited number of physical quantities. The basic description for this process is given by the Smoluchowski equation (Smoluchowski 1917), which is part of the GDE⁷ or equation (0-17). The aim of the work is to investigate the physical process of coagulation in the transition regime in a systematic and flexible way, as for this purposes no standard measuring procedure is available. To fill this gap, an aerosol coagulation coefficient measurement device (CMD) has been developed to measure systematically the coagulation coefficient, which corresponds to the coagulation kernel of the Smoluchowski equation. By means of this a more precise and mobile measurement of the coagulation coefficient comes into reach, with the future goal of establishing it as standard measurement quantity (Heiden and Sturm 2005).

⁵ See section I.1.16 for definition.

⁶ This is where the Knudsen number is about 1 (see section I.1.5 for Knudsen number definition).

⁷ General dynamics equation.

Development of the CMD for the coagulation coefficient measurement

Aerosol characterization

I.1.1 On the lognormal size distribution interpretation

A very useful form to describe the distributions of nanoaerosols is to use the lognormal size distribution. It fits for the most parts of unimodal sources very well. Up to now there has been no theoretical explanation for this, though a good overview is given in (Friedlander 2000; Hinds 1999). In the following a short deduction for the relation between the quantities $dN/dlog(d_p)$ and dN, with respect to dV/dlog(dp) is given.

The most important function is the *continuous size distribution*. When dN [#/cm³_gas] is the number of particles per unit volume of gas given in the diameter range d_p to $d(d_p)$ this can be formulated as:

$$dN = n_{d} \cdot (dp) \cdot d(dp)$$
 (0-1)

In this defining equation, $n_d(d_p,t)$ [#/(cm³_gas*nm_particle)] is the *particle size distribution function* for the general case. With reference to the units, that means that particles are related to a certain air volume, which equates to a size *particle concentration* and a characteristic length for the particles.

It is now of importance to relate these basic quantities to the common $dN/dlog(d_p)$ interpretation of the particles.

The variable dN refers to the particle concentration in a size interval, which can be measured directly with a CPC/CNC⁸, this is normally then plugged into the $dN/dlog(d_p)$ interpretation. Differentiating the general equation for the relation between the natural and the decadic logarithm (0-2) gives (0-3).

$$\ln(d_p) = \ln 10 \log(d_p) \tag{0-2}$$

$$\frac{1}{d_{p}} \cdot d(d_{p}) = \ln 10 \cdot d\log(d_{p})$$
(0-3)

Together with (0-1) the transformation equation for the two distributions is given in (0-4).

$$\frac{\mathrm{dN}}{\mathrm{dlog}(\mathrm{d}_{\mathrm{p}})} = \mathrm{n}_{\mathrm{d}} \cdot \mathrm{d}_{\mathrm{p}} \cdot \ln(10) = \mathrm{n}_{\mathrm{d}} \cdot \mathrm{d}_{\mathrm{p}} \cdot 2.3 \tag{0-4}$$

To calculate now the relation between dN and dN/dlog(dp) it is at first unsatisfactory to calculate n_d from (0-4) and then dN from (0-1) leading to fluctuations of the transformed equation. To avoid fluctuation we introduce a mean value x_q , where the index i corresponds to

⁸ Condensation Particle Counter; Condensation Nuclei Counter

the measured values of the size distribution and Δd_{pi} is the mean difference between the diameters.

$$x_{q} = \frac{1}{m} \cdot \sum_{i=1}^{m} \frac{d_{p_{i}} \cdot \ln(10)}{\Delta d_{p_{i}}} = \frac{1}{m} \cdot \sum_{i=1}^{m} \frac{d_{p_{i}} \cdot 2.3}{\Delta d_{p_{i}}} \qquad \Delta d_{p_{i}} = \frac{d_{p_{i+1}} - d_{p_{i-1}}}{2} \quad i = 2..m-1$$

$$\Delta d_{p_{i}} = d_{p_{i+1}} - d_{p_{i}} \quad i = 1$$

$$\Delta d_{p_{i}} = d_{p_{i-1}} - d_{p_{i-1}} \quad i = m$$
(0-5)

Then we get a practical formula for the transformation of the distributions dN and dN/dlog(dp):

$$\frac{\mathrm{dN}}{\mathrm{dlog}(\mathrm{d}_{\mathrm{p}})} = \mathrm{dN} \cdot \mathrm{x}_{\mathrm{q}} \tag{0-6}$$

By means of the definition of a spherical particle, the relation between the $dN/dlog(d_p)$ and $dV/dlog(d_p)$ is maintained. Defining the volume V

$$V = \int 1 \, dV = \int n_d \cdot \frac{d_p^3 \cdot \pi}{6} \, d(d_p) \tag{0-7}$$

we get together with (0-3) $dV/dlog(d_p)$ as a function of d_p and n_d :

$$\frac{dV}{dlog(d_p)} = \frac{ln(10) \cdot \pi \cdot d_p^{-4} \cdot n_d(d_p)}{6} = 1.2056 d_p^{-4} \cdot n_d(d_p)$$
(0-8)

Assuming constant density ρ_p the mass distribution follows out of (0-8):

$$\frac{\mathrm{dm}}{\mathrm{dlog}(\mathrm{d}_{\mathrm{p}})} = \rho_{\mathrm{p}} \cdot \frac{\mathrm{dV}}{\mathrm{dlog}(\mathrm{d}_{\mathrm{p}})} \tag{0-9}$$

I.1.2 Application to fractal aggregates

When we want to use (0-8) for any particle form which can be described with the fractal dimension D_f we first look at the common definition of the fractal dimension for particle diameters⁹:

$$N_{p} = \frac{v}{v_{0}} = A \cdot \left(\frac{d_{p}}{d_{p_{0}}}\right)^{D_{f}}$$
(0-10)

 N_p is the number of particles in one aggregate, v the volume of the particle, v_0 the volume of the primary particle A, the lacunarity, d_p the overall diameter of the particle, d_{p0} the primary

particle diameter and D_f the fractal dimension. A is usually set for a constant of one, which leads to deviations of the description for small aggregates. We then get the fractal volume of the particle:

$$\mathbf{v} = \mathbf{A} \cdot \frac{\left(\frac{\mathbf{d}_{\mathbf{p}_{0}}\right)^{3} \cdot \pi}{6} \cdot \left(\frac{\mathbf{d}_{\mathbf{p}}}{\mathbf{d}_{\mathbf{p}_{0}}}\right)^{\mathbf{D}_{\mathbf{f}}}$$
(0-11)

Substituting now (0-11) in (0-7) and using again (0-3) we get the more general solution for $dV/dlog(d_p)$:

$$\frac{dV}{d\log(d_p)} = A \cdot \frac{\ln(10) \cdot \pi}{6} \cdot (d_{p_0})^{3-D_f} \cdot d_p^{D_f+1} \cdot n_d(d_p) = 1.206 (d_{p_0})^{3-D_f} \cdot d_p^{D_f+1} \cdot n_d(d_p)$$
(0-12)

It can be remarked that different methods of particle sampling lead to different particle size distribution functions with reference to their density.

I.1.3 The lognormal size distribution

The lognormal size distribution is a good approximation for a lot of unimodal nanoaerosols, although the reasons are not well understood. It is a distribution which appears as a normal distribution when the x-axis has the logarithmic scale. It can be written as size distribution function in the form:

$$n_{d}(d_{p}) = \frac{N_{\infty}}{\sqrt{2 \cdot \pi} \cdot d_{p} \cdot \ln(\sigma_{g})} \cdot e^{\left[\frac{-\left(\ln(d_{p}) - \ln(d_{pg})\right)^{2}}{2 \cdot \ln(\sigma_{g})^{2}}\right]}$$
(0-13)

 N_{∞} [#/cm³] is the total particle concentration, σ_g the geometric standard deviation and d_{pg} the geometric mean diameter.

The distribution function n_d is related with (0-4) to $dN/dlog(d_p)$. For a given $dN/dlog(d_p)$ the total number concentration N_{∞} can be calculated with the following equation:

$$N_{\infty} = \frac{1}{\ln(10)} \sum_{i=1}^{n-1} \frac{\left(\frac{dN}{d\log(d_p)}\right)_{i+1} - \left(\frac{dN}{d\log(d_p)}\right)_{i}}{\left[\ln\left(\frac{dN}{d\log(d_p)}\right)_{i+1}} + \ln\left(\frac{d_{p_{i+1}}}{d_{p_{i}}}\right) = \frac{1}{\ln(10)} \sum_{i=1}^{n-1} mdN_{i}$$

$$(0-14)$$

⁹ e.g. (Mandelbrot 1987); (Friedlander 2000)

The index i goes from 1 to n-1 where n is the number of samples for the distribution, and mdN is the mean differential distribution. The geometric mean diameter d_{pg} and the geometric standard deviation σ_g can then be calculated from the experiments with:

$$\sum_{i=1}^{n-1} \ln \left(\frac{d_{p_{i+1}} - d_{p_i}}{\ln \left(\frac{d_{p_{i+1}}}{d_{p_i}} \right)} \right)$$

$$d_{pg} = e$$
(0-15)

$$\sigma_{g} = e^{\sqrt{\sum_{i=1}^{n-1} \left(\ln \left(\frac{d_{p_{i+1}} - d_{p_{i}}}{\ln \left(\frac{d_{p_{i+1}}}{d_{p_{i}}} \right)} \right)^{-\ln(d_{pg})} \right)^{2}}$$
(0-16)

In the Appendices, visual basic programs for gaining the lognormal size distribution parameters from grouped experimental data for $dN/dlog(d_p)$ or $dN(d_p)$ are printed.

Aerosol dynamics relevant for the coagulation coefficient

I.1.4 <u>General Dynamics Equation (GDE)</u>

The aerosol dynamics in general can be described by the GDE in (0-17), according to $(Friedlander 2000)^{10}$. It can describe the motion and the growth process of the particulates. N_{∞} is the total particle concentration, usually, and also in my experiments, measured with the CPC. In equation (0-17) it is looked at the volume distribution which is integrated from a minimum volume v_d to infinite volume u.

In the first term dN_{∞}/dt the time dependence of the total size concentration is given. The second term describes the change of particles due to convective motion of the particles with the bulk velocity v_B which pass the observed volume in the time interval dt. The index i corresponds to Einstein's sum convention.

$$\frac{d}{dt}N_{\infty} + v_{B}\cdot\frac{\partial}{\partial x_{i}}N_{\infty} = \int_{v_{d}}^{u} \frac{d}{dv}I \,dv + \frac{\partial^{2}}{\partial x_{i}^{2}}\int_{v_{d}}^{u}D\cdot n(v)\,dv + \frac{1}{2}\cdot\int_{v_{d}}^{u}\int_{0}^{v}\beta(\overline{v},v-\overline{v})\cdot n(\overline{v})\cdot n(v-\overline{v})\,d\overline{v}\,dv \dots$$

$$+ -\int_{v_{d}}^{u}\int_{0}^{v}\beta(v,\overline{v})\cdot n(v)\cdot n(\overline{v})\,d\overline{v}\,dv - \frac{d}{dx_{3}}\int_{v_{d}}^{u}c_{s}\cdot n\,dv$$

$$(0-17)$$

The third term describes the nucleation, where the variable I is the particle current according to a nucleation law. The fourth term describes the diffusion losses, e.g. through wall deposition by wall collision, with D the diffusion coefficient and n=n(v) the particle size

¹⁰ p. 311 ff.

Development of the CMD for the coagulation coefficient measurement

distribution for the volume. The fifth and sixth term describes the coagulation with β as the *collision frequency function*¹¹. The fifth term describes the gaining of particles of dv due to growth from the collision of particles with smaller diameter (particle with volume $d\overline{v}$ collide with particles with volume $d(\overline{v} - v)$), whereas the sixth term describes the loss of particles with volume dv due to all collisions of particles with volume $d\overline{v}$ that collide with particles with volume dv. The seventh term describes the loss due to the gravitational settling of spherical particles, where c_s is the terminal settling velocity, gained from the Stokes law (Friedlander 2000)¹² also considering the buoyant forces:

$$c_{s} = \frac{d_{p}^{2} \cdot g}{18 \cdot \mu} \cdot \left(\rho_{p} - \rho_{g}\right)$$
(0-18)

 ρ_p and ρ_g are the particle and gas density, d_p is the diameter of the particle and μ is the viscosity of the gas. Replacing the volume of the particle by the fractal volume defined by (0-10) the terminal settling velocity c_{sf} can be gained for fractal particles:

$$c_{sf} = A \cdot \left(\frac{d_p}{d_{p0}}\right)^{D_f - 3} \cdot c_s$$
(0-19)

The fractal particle contrary to a spherical one leads to a drastic decrease in particle settling velocity as the fractal dimension is always ≤ 3 and the particle size d_p/d_{p0} increases. This is also shown for illustration in Figure 1 for A=1, different particle size ratios dp/dp_0 and fractal dimensions D_f . This can be also observed for macro fractal particles like snow flakes or springs.

¹¹ β is also called coagulation kernel.

¹² p. 15; this equation is a result of the gravity, buoyant and Stokes resistant forces.

Figure 1 Corrected settling factor c_{sf} for fractal particles as a function of the settling velocity c_s for spherical particles. Decreasing fractal dimension D_f and decreasing particle size d_p leads to a decreasing settling velocity. The value $D_f=1.78$ is the value for Brownian coagulation in the three dimensional space often applied for soot particles (Jullien and Botet 1987) p.88.

For our application, the GDE can be simplified. The first term stays as we regard the time dependency. The convective forces can be neglected as there was no stirring experiment and the gas motion velocity v can be neglected Re $<10^{13}$. Nucleation effects are assumed to be neglected, as the thermodynamic state (p, T, V) stays constant. This effect can not be neglected, when there is evidence of a condensable vapor and hence nucleation. The nucleation rate is highly nonlinear with temperature. Therefore this quantity has to be observed very accurately in the case of possible nucleation.

It is assumed, that the diffusion losses cannot be neglected as well as the coagulation. The gravitational settling can be neglected for nanoparticles below 1 μ m, as the observed ones, especially in relative short time ranges.

The resulting equation of the particle concentration in time, dependant on the wall deposition and the coagulation is given as:

Development of the CMD for the coagulation coefficient measurement

¹³ In practical this condition is fulfilled best near the walls in the diffusion boundary layer, where the later derived theory of loss by coagulation and diffusion is applied. In the bulk the Reynolds number Re is about 1 to 10

$$\frac{\mathrm{d}}{\mathrm{dt}} N_{\infty} = \frac{\partial^2}{\partial x_i^2} \int_{\mathbf{v}_d}^{\mathbf{u}} \mathbf{D} \cdot \mathbf{n}(\mathbf{v}) \, \mathrm{d}\mathbf{v} + \frac{1}{2} \cdot \int_{\mathbf{v}_d}^{\mathbf{u}} \int_0^{\mathbf{v}} \beta(\bar{\mathbf{v}}, \mathbf{v} - \bar{\mathbf{v}}) \cdot \mathbf{n}(\bar{\mathbf{v}}) \cdot \mathbf{n}(\mathbf{v} - \bar{\mathbf{v}}) \, \mathrm{d}\bar{\mathbf{v}} \, \mathrm{d}\mathbf{v} \dots$$

$$-\int_{\mathbf{v}_d}^{\mathbf{u}} \int_0^{\mathbf{v}} \beta(\mathbf{v}, \bar{\mathbf{v}}) \cdot \mathbf{n}(\mathbf{v}) \cdot \mathbf{n}(\bar{\mathbf{v}}) \, \mathrm{d}\bar{\mathbf{v}} \, \mathrm{d}\mathbf{v}$$
(0-20)

Neglecting the coagulation leads to:

$$\frac{d}{dt}N_{\infty} = \frac{\partial^2}{\partial x_i^2} \int_{v_d}^{u} D \cdot n(v) dv$$
(0-21)

When the surface to volume ratio S/V is large enough then the deposition on the wall can be neglected equation (0-20) is leading to:

$$\frac{\mathrm{d}}{\mathrm{dt}} N_{\infty} = \frac{1}{2} \cdot \int_{\mathbf{v}_{\mathrm{d}}}^{\mathbf{u}} \int_{0}^{\mathbf{v}} \beta(\bar{\mathbf{v}}, \mathbf{v} - \bar{\mathbf{v}}) \cdot n(\bar{\mathbf{v}}) \cdot n(\mathbf{v} - \bar{\mathbf{v}}) \, \mathrm{d}\bar{\mathbf{v}} \, \mathrm{d}\mathbf{v} \dots$$

$$- \int_{\mathbf{v}_{\mathrm{d}}}^{\mathbf{u}} \int_{0}^{\mathbf{v}} \beta(\mathbf{v}, \bar{\mathbf{v}}) \cdot n(\mathbf{v}) \cdot n(\bar{\mathbf{v}}) \, \mathrm{d}\bar{\mathbf{v}} \, \mathrm{d}\mathbf{v} \qquad (0-22)$$

I.1.5 Diffusions coefficient D

The Diffusion coefficient for particles in air according to the Einstein relation can be gained from (0-27):

$$D = \frac{k \cdot T \cdot C}{3 \cdot \pi \cdot d_{p} \cdot \mu}$$
(0-23)

C is the Cunningham-Knudsen-Weber-Millikan correction factor:

$$C = 1 + Kn \cdot \left(\frac{1.257 + 0.4 \cdot e^{\frac{-1.1}{Kn}}}{1.257 + 0.4 \cdot e^{\frac{-1.1}{Kn}}}\right)$$
(0-24)

$$Kn = \frac{\lambda}{\frac{d_p}{2}}$$
(0-25)

C is an empirical function of the Knudsen number. The Knudsen number as defined below is the ratio of the mean free path of the gas λ and the particle radius $d_p/2$. The mean free path of the gas is:

$$\lambda = \frac{MG}{\sqrt{2} \cdot N_{A} \cdot \rho \cdot \pi \cdot d_{m}^{2}}$$
(0-26)

MG is the molecular weight; N_A is the Avogadro constant, ρ the density of the gas and d_m the *collision diameter* of the gas¹⁴. For air the collision diameter $d_m=3.7*10^{-10}$ [m]. For standard air¹⁵ the mean free path is 0.066 [µm] e.g.(Hinds 1999) p.21.

The usually defined diffusion constant is a function of two materials, describing the material flux of one material into the other, according to Fick's equation. In general the diffusion depends on all the components of the medium in which diffusion occurs. For the usual diffusion constant referring to two components as for the multicomponent pendant it is to be expected that C will depend on the gas in which particles are suspended and hence is not valid for gases other than air. There is also a temperature dependence of the diffusion coefficient which is not included in the Cunningham correction factor (equation (0-24)), as the experiments were done at room temperature (Rudyak and Krasnolutskii 2001; Rudyak and Krasnolutskii 2002).

In the above mentioned papers, Rudyak and Krasnotlutskii have introduced a new approach for determining the temperature dependent particle diffusion coefficient, taking into account that one gas particle interacts with multiple surface particles. It would be of scientific interest to study this effect in temperature regions above and below room temperature on the diffusion coefficient as the link to the coagulation coefficient.

I.1.6 Coagulation coefficient K

I.1.6.1 Smoluchowski equation

The coagulation constant K^{16} is defined as¹⁷:

$$K = \frac{4 \cdot k \cdot T}{3 \cdot \mu} \cdot C = 4 \cdot \pi \cdot d_p \cdot D$$
(0-27)

k is the Boltzmann constant, T the absolute temperature, μ the dynamic viscosity and C the Cunningham correction factor. There is a relation between the coagulation constant and the particle diffusion constant in the Brownian regime.

Development of the CMD for the coagulation coefficient measurement

¹⁴ Distance between the centers of two colliding molecules

¹⁵ p=1.013 [bar] and T=293 [K]

¹⁶ K is also called coagulation coefficient, collision frequency β see section I.1.4 or coagulation kernel.

¹⁷ There is confusion in the literature about the factor of two in the coagulation coefficient. According to (Rooker and Davies 1979) this is due to an error in the theoretical derivation.

The Smoluchowski equation (Smoluchowski 1917) for monodisperse coagulation can then be written as equation (0-28) which is a special case for the GDE regarding only coagulation with a constant coagulation coefficient K.

$$\frac{\mathrm{d}}{\mathrm{dt}}\mathrm{N}_{\infty} = -\mathrm{K}\cdot\mathrm{N}_{\infty}^{2} \tag{0-28}$$

 $N_{\ensuremath{\varpi}}$ is the particle concentration for the complete size distribution over time. The solution is,

$$N_{\infty} = \frac{N_0}{1 + t \cdot K \cdot N_0}$$
(0-29)

where t is the coagulation time and N_0 is the initial particle concentration.

I.1.6.2 Approximation of applicability of the Smoluchowski Equation

Equation (0-29) is depicted in Figure 2, for the coagulation constant $K=54*10^{-10}$ according to (Rooker and Davies 1979), and can be used for a rough determination of the particle concentration over the time, given an initial particle concentration. This is useful for approximation of the particle concentration decay after the coagulation time t. The measured coagulation constant will vary around the first approximation, depending on the temperature and the different types of aerosols.

Figure 2 Solution of the Smoluchowski equation for different initial concentration and a constant coagulation coefficient $K=54*10 \ [cm^3/s]$.

As it is necessary to have a difference in concentration measurement to determine the coagulation coefficient, it is useful to compare the initial concentration with the actual concentration over time. Hence we define the *concentration decrease* α :

$$\alpha = \frac{N_{\infty}}{N_0} \tag{0-30}$$

Together with (0-29) we get the following equations for N_{∞} and N_0 :

$$\alpha(N_0, t) = \frac{1}{1 + t \cdot K \cdot N_0} \tag{0-31}$$

$$\alpha(N_{\infty}, t) = 1 - t \cdot K \cdot N_{\infty}$$
(0-32)

Equations (0-31) and (0-32) are depicted in Figure 3 for four different coagulation times t, for a fixed coagulation coefficient K. The dotted curves depict the initial concentration N_0 according to (0-31) the lined curves the concentration N_{∞} according to (0-32) after a certain coagulation time t.

Given a desired concentration $N_0=2*10^5$ [#/cm³] and a desired concentration decrease α the end concentration $N_{\infty}=1.2*10^5$ [#/cm³] after the coagulation time of 600 [s] can be gained by following the black arrows.

Figure 3 Solution of the Smoluchowski equation for a different concentration decrease α and the corresponding actual as the initial particle concentration N and N₀; Different coagulation times t are used as a parameter. The coagulation coefficient is constant $K = 54*10^{-10} [\text{cm}^3/\text{s}]$.

I.1.7 Determination of the coagulation coefficient K

I.1.7.1 Theory of loss by coagulation and diffusion

The general dynamics equation can be simplified for a constant coagulation coefficient K, as it is done in the Smoluchowski equation (0-27). Fick's second law of diffusion can be written for diffusion only applying a constant diffusion coefficient with respect to particle size and using the coordinate independent Laplace operator:

$$\frac{d}{dt}N_{\infty} = -D \cdot \Delta N_{\infty} = -div (D \cdot grad(N_{\infty}))$$
(0-33)

The particle concentration gradient dN_{∞}/dt is hence proportional to the divergence of the gradient of N_{∞} which is also:

$$N_{\infty} = \frac{N_{\#}}{V} \tag{0-34}$$

 $N_{\#}$ are the total particles and V is the reference volume. Assuming natural convection in the coagulation reactor (CMD) a diffusion layer of thickness h remains, in which only diffusion takes place. This assumption corresponds to the "*two film theory*" for mass transport (Pflügl and Rentz 2000)¹⁸. If the particle concentration is zero on the wall and N_{∞} in the core of the coagulation reactor then the gradient is constant over the whole surface:

$$\operatorname{grad}(N_{\infty}) = \frac{N_{\infty}}{h}$$
 (0-35)

When we now equate the flux of the particles from the container volume V through the surrounding surface S according to the Gauss integral law the diffusion results in:

¹⁸ p. 182; Corresponding to this theory, the concentration gradient is linear from a constant value at the wall (layer) to a constant concentration in the core. A constant velocity u from the bulk to the wall and no velocity boundary layer is regarded. In this case the *particle transfer coefficient* β =D/h. To take into account also the velocity boundary layer, the "Grenzschicht Theorie" (boundary layer theory), for the flow over a plate, can be applied, leading to a different solution for laminar and turbulent flow, which is also dependent on the length of the plate (settler actual effective length). For laminar flow β_x is proportional to D^{2/3} (from exact solution Sh_x=0.332*Re_x^{1/2}*Sc^{1/3}). For turbulent flow β_x is proportional to D^{0.57} (from exact solution Sh_x=0.0296*Re_x^{4/5}*Sc^{0.43}), with β_x =D/x*Sh_x, where D is the particle diffusion coefficient, Sh_x the local particle Sherwood number β_x *x/D, x the actual length coordinate parallel to the flow direction, Sc the Schmidt number v/D, and Re_x the local Reynolds number u*x/v.

$$\frac{d}{dt}N_{\infty} = -\frac{1}{V} \int div \left(D \cdot \frac{N_{\infty}}{h} \right) dV = -\frac{1}{V} \int D \cdot \frac{N_{\infty}}{h} dS$$
(0-36)

Figure 4 Principal surface, volume and particle concentration relation of the settler The solution of equation (0-36) is,

$$\beta = \frac{D}{h} \tag{0-37}$$

$$L = \frac{S}{V} \cdot \frac{D}{h} = \frac{S}{V} \cdot \beta$$
(0-38)

$$\frac{d}{dt}N_{\infty} = -\frac{S}{V} \cdot \frac{D}{h} \cdot N_{\infty} = -\frac{S}{V} \cdot \beta \cdot N_{\infty} = -L \cdot N_{\infty}$$
(0-39)

where β [m/s] is the *particle transfer coefficient* in analogy to the mass transfer coefficient, and L [1/s] is the *particle wall diffusion frequency*. The equation is valid for a small diffusion layer of thickness h compared to the characteristic length of the reactor.

Simplifying (0-20) and introducing of (0-39) leads to

$$\frac{\mathrm{d}}{\mathrm{dt}} N_{\infty} = -\left(K \cdot N_{\infty}^{2} + L \cdot N_{\infty}\right) \tag{0-40}$$

which describes simultaneous coagulation and deposition. K is the coagulation coefficient and L is the previously defined particle wall diffusion frequency. Equation (0-40) can also be identified with the logistic equation (Soldov and Ochkov 2005)¹⁹ which is a general equation for growth limited by saturation. The growth corresponds to the coagulation coefficient; the saturation corresponds to the loss due to wall diffusion. Equation (0-40) is the base equation of the four methods listed in Table 1 and derived in the next sections for gaining the coagulation coefficient K. Method (1) is the method derived from Rooker and Davies, where method (2) is the more general solution of method (1) for long residence times. Methods (1)&(2) are valid for a constant volume batch reactor (CV), whereas methods (3)&(4) are valid for the constant concentration (CC) coagulation reactor²⁰ used in this work. Method (1)

¹⁹ p.10ff

²⁰ Definition see section I.1.15 p. 77

Development of the CMD for the coagulation coefficient measurement

Table 1

constant volume and CC the constant concentration reactor;				
Method	Restrictions	Description	Reactor type	
(1)	t → 0	Method of Rooker and Davies (Rooker and Davies 1979)	CV	
(2)	t: 0∞ (general method)	Like method of Rooker and Davies adapted for long times	CV	
(3)	γ → 0	Method developed in this work for the constant concentration reactor and analogous to method (1)	CC	
(4)	$\gamma: 0\infty$ (general method)	Method developed in this work for the constant concentration reactor and analogous to method (2)	CC	

Methods of the determination of the coagulation coefficient K; CV denotes the

and (3) are used for short times and (2)&(4) for long time measurement of an aerosol.

I.1.7.2 Method (1) - Constant Volume Batch Reactor (CV) for short times

According to Rooker and Davies (Rooker and Davies 1979), a method for determining the coagulation equation can be derived. First an apparent coagulation coefficient K_a is introduced:

$$K_{a} = K \cdot \left(1 + \frac{L}{K \cdot N_{\infty}} \right)$$
(0-41)

This coagulation coefficient appears in the settler due to deposition on the wall and due to coagulation. In the case of an infinite surface, K_a becomes K. For practical application only K_a can be measured directly. Under the assumption that K_a is constant, which is true for short coagulation times, relative to the concentration, equation (0-40) can be written as follows:

$$\frac{\mathrm{d}}{\mathrm{dt}}\mathrm{N}_{\infty} = -\mathrm{K}_{a} \cdot \mathrm{N}_{\infty}^{2} \tag{0-42}$$

This can be integrated like the Smoluchowski equation (0-28),

$$\frac{1}{N_{t2}} - \frac{1}{N_{t1}} = K_{a} \cdot (t_2 - t_1)$$
(0-43)

where t_i (i=1,2) denote two different times with constant K_a . In the Smoluchowski plot (1/N_{∞} is plotted against t) this can be seen when K_a is a straight line. K_a is dependent on the particle concentration N_{∞} , and as $K \approx N_{\infty}^2$ and $L \approx N_{\infty}$ K_a will differ, for different wall diffusion characteristics.

Equation (0-41) can now be integrated for constant K and L, by making a decomposition into partial fractions and using the defining equation (0-41) for K_a and for times t_i (i=1,2):

$$-L(t_{2}-t_{1}) = \int_{t_{1}}^{t_{2}} \frac{1}{N_{\infty}} dN_{\infty} - \frac{K}{L} \cdot \int_{t_{1}}^{t_{2}} \frac{1}{\frac{K}{L} \cdot N_{\infty} + 1} dN_{\infty} = \ln \left(\frac{1 + \frac{L}{K \cdot N_{t1}}}{1 + \frac{L}{K \cdot N_{t2}}}\right) = \ln \left(\frac{K_{a,t1}}{K_{a,t2}}\right)$$
(0-44)

Hence,

$$K_{a, t2} = K_{a, t1} \cdot e^{L \cdot (t_2 - t_1)}$$
(0-45)

According to Rooker and Davies, this equation cannot be used for evaluation of L, as the assumption that L and K are constant is not valid over long periods of time, and K_a is a function of L.

For short periods of time K_a is constant for different particle concentrations N_{∞} . This leads to the following experimental method: Having one material of nanoparticles dispersed in a gas²¹ with different particle concentrations the apparent coagulation coefficients can be calculated as slopes in the Smoluchowski plot ($1/N_{\infty}$ against t). Then from equations (0-38) and (0-41) the coefficients L, K, β , and h can be calculated:

$$L = \frac{K_{a, t2} - K_{a, t1}}{\frac{1}{N_{t2}} - \frac{1}{N_{t1}}}$$
(0-46)

$$K = K_{a, t1} - \frac{L}{N_{t1}} = K_{a, t2} - \frac{L}{N_{t2}}$$

$$\beta = L \cdot \frac{V}{S}$$

$$h = \frac{D}{L} \cdot \frac{S}{V}$$

If there are more than two apparent coagulation coefficients K_a available for the experiments, then K_a is plotted as a function of the initial particle concentration N_{∞} . The least mean squares fit of equation (0-41) yields to the coefficients for L and K and with equation (0-46) also to β and h.

To fulfill the conditions of the theory the size of the dimensions of the coagulation container has to be large compared to the diffusion layer h. Otherwise the geometry of the container has also to be taken into account in equation (0-36).

²¹ Most commonly air

Development of the CMD for the coagulation coefficient measurement

I.1.7.3 Method (2) - Constant Volume Batch Reactor (CV) for long times

For the case that the coagulation times are long and hence K_a is not constant any more, the detailed solution of equation (0-45) has to be calculated. This is done by inserting (0-41) in equation (0-45). The total particle concentration N_{∞} can then be calculated as a function of time t, setting t₂=t and t₁=0 and N(t)=N₀ as:

$$N_{\infty}(t) = \frac{L}{K \cdot \left[\left(1 + \frac{L}{K \cdot N_0} \right) \cdot e^{L \cdot t} - 1 \right]}$$
(0-47)

I.1.7.4 Method (4) - <u>C</u>onstant <u>C</u>oncentration Reactor (CC) for long times

The method of Rooker and Davies was applied for evaluation of the coagulation coefficient. The surface to volume ratio is in the same order of magnitude for the built CMD than that of Rooker and Davies. The main difference is that the volume is variable as the CMD is a *constant concentration reactor* (see section I.1.15, p.77). The CMD allows for a coagulation coefficient K determination by means of a single concentration measurement or the examination of the particle concentration decrease for the apparent coagulation coefficient K_a.

Mathematically the volume of the *constant concentration reactor* can be described by (0-48). For obtaining the equation describing the concentration as a function of time coagulation and diffusion the volume in (0-40) has to be replaced by:

$$V(t) = V_{70} - Vp_{7}t$$
 (0-48)

. . .

 V_{70} is the initial total volume of the settler, Vp_7 is the constant settler flow due to geometrical considerations and t is the time the measurement takes place.

In section I.1.11 it is derived that Vp₇ is inverse proportional to t_{total}^{22} . Assuming that the volume for the empty settler is very small compared to the initial settler volume then Vp₇ is also approximately proportional to V₇₀. Defining the *total time ratio* γ ,

$$\gamma = \frac{t}{t_{\text{total}}} \tag{0-49}$$

equation (0-48) can be written as:

$$V(t) = V_{70}(1 - \gamma)$$
(0-50)

²² Total time for emptying the settler.
We define L_0 according to equation (0-51) as a function of the initial conditions. These are the surface to volume ratio S/V₇₀ (see Table 2) and the *particle transfer coefficient* β or S/V₇₀, the Diffusion coefficient D and the diffusive layer h.

$$L_0 = \frac{S}{V_{70}} \cdot \frac{D}{h} = \frac{S}{V_{70}} \cdot \beta$$
(0-51)

With equation (0-51) L can be written in equation (0-52) as a function of γ and a constant particle wall diffusion frequency L₀.

$$L(\gamma) = \frac{L_0}{1 - \gamma}$$
(0-52)

The governing equation for the constant concentration reactor can be yielded inserting equation (0-52) into (0-40) and substituting t according to equation (0-49):

$$\frac{d}{d\gamma} \frac{N_{\infty}}{t_{\text{total}}} = -\left(K \cdot N_{\infty}^{2} + \frac{L_{0}}{1 - \gamma} \cdot N_{\infty}\right)$$
(0-53)

 t_{total} is constant for a measurement as the sample flow rate Vp₄ is constant and can be gained from equation (0-11).

To solve equation (0-53) we substitute N_{∞} with y^{α} in equation (0-53). From this we see that α =-1. As a consequence we substitute N_{∞} with y^{-1} in equation (0-53) yielding the following inhomogeneous differential equation:

$$\frac{d}{d\gamma} y \cdot \frac{1}{t_{\text{total}}} - \frac{L_0}{1 - \gamma} \cdot y = K$$
(0-54)

The solution for the homogenous part is,

$$y_{h} = C \left(\frac{1}{1-\gamma}\right)^{L_{0} \cdot t_{\text{total}}}$$
(0-55)

where the variable C is the integration constant. Making the variation of constants and inserting the in homogenous solution yields an equation for C:

$$\frac{d}{d\gamma}C = K \cdot t_{\text{total}} \cdot (1 - \gamma)^{L_0 \cdot t_{\text{total}}}$$
(0-56)

After integration C is:

$$C = -\frac{K \cdot t_{\text{total}} \cdot (1 - \gamma)^{L_0 \cdot t_{\text{total}} + 1}}{L_0 \cdot t_{\text{total}} + 1}$$
(0-57)

After insertion in equation (0-55) and simplification the particular solution is:

$$y_{p} = -\frac{(1-\gamma) \cdot K \cdot t_{\text{total}}}{L_{0} \cdot t_{\text{total}} + 1}$$
(0-58)

(0 = 1)

The complete solution is then the superposition of homogenous and inhomogeneous solution and resubstitution of N_{∞} :

$$\frac{1}{N_{\infty}} = y = y_{p} + y_{h} = (1 - \gamma)^{-L_{0} \cdot t_{total}} \cdot C - \frac{(1 - \gamma) \cdot K \cdot t_{total}}{L_{0} \cdot t_{total} + 1}$$
(0-59)

With the initial condition $N_{\infty}=N_0$ and $\gamma=0$ the integration constant C gets:

$$C = \frac{1}{N_0} + \frac{K \cdot t_{\text{total}}}{L_0 \cdot t_{\text{total}} + 1}$$
(0-60)

Simplification of equation (0-59) and (0-60) yields for N_{∞} :

$$N_{\infty} = \frac{L_{0} \cdot t_{\text{total}} + 1}{\left(1 - \gamma\right) \cdot K \cdot t_{\text{total}}} \left[\frac{1 + \frac{1}{K \cdot N_{0}} \cdot \left(\frac{1}{t_{\text{total}}} + L_{0}\right)}{\left(1 - \gamma\right)^{L_{0} \cdot t_{\text{total}} + 1}} - 1 \right]}$$
(0-61)

This is the predicted concentration for a complete measurement run from $\gamma=0$ to $\gamma=1$, and simultaneous coagulation and diffusion. Equation (0-61) is shown in Figure 5 for different initial particle concentrations N₀, and typical constant values for K and L=L₀ for the experiments of Rooker and Davies.

Figure 5 Solution of the logistic equation for the constant concentration reactor for different initial concentrations N_0 and a constant emptying time $t_{total} = 75$ [min] and the constants $L_0 = 1.89 \times 10^{-4}$ [1/s] and = 56.7*10⁻¹⁰ [cm³/s] according to equation (0-61)

I.1.7.5 Method (3) - Constant Concentration Reactor (CC) for short times

For method (3) the initial concentration decay is regarded. Successive dilution and measurement of the probe gives different initial concentrations. Again equation (0-61) can be applied for evaluation of the coefficients L_0 and K.

A linearization can be made in analogy to the method of Rooker and Davies, as different initial concentrations lead to almost linear concentration decay when the time t or γ is small. The first order Taylor development of equation (0-61) in γ is:

$$N_{\infty}(\gamma) = N_0 - \left(K \cdot N_0^2 + L_0 \cdot N_0\right) \cdot t_{\text{total}} \cdot \gamma$$
(0-62)

Subsequent derivation in γ yields to:

$$\frac{\mathrm{d}}{\mathrm{d}\gamma} \mathrm{N}_{\infty} \cdot \frac{1}{\mathrm{t}_{\text{total}}} = -\left(\mathrm{K} \cdot \mathrm{N}_{0}^{2} + \mathrm{L}_{0} \cdot \mathrm{N}_{0}\right)$$
(0-63)

After resubstitution of γ with equation (0-49), substitution of L₀ with L and N₀ with N_{∞} equation (0-40) is obtained. This is the basis equation for the general theory for loss by coagulation and diffusion.

In analogy to equation (0-41) an apparent coagulation coefficient can be introduced:

$$K_{ac}(N_0) = K \cdot \left(1 + \frac{L_0}{K \cdot N_0}\right)$$
(0-64)

Combining equations (0-63) and (0-64) yields equation (0-65).

$$K_{ac}(N_0) = -\frac{\frac{d}{d\gamma}N_{\infty}}{N_0^2 \cdot t_{total}}$$
(0-65)

As a result for small times or when $\gamma \rightarrow 0$ K_{ac} is a function of the declining particle concentration slopes, the total measurement time t_{total}, which is a function of sample flow, and the initial particle concentration N₀.

A least mean squares fit for equation (0-64) for all different N_0 and one coagulation run with this method gives then the coagulation coefficient K and the variable L_0 for the settler, or the constant concentration reactor in general.²³

I.1.7.5.1 Graphical method

From equation (0-65) a graphical method²⁴ for determination of the coagulation coefficient can be derived. For $\gamma \rightarrow 0$, equivalent with the beginning of the measurement, when $t \rightarrow 0$, equation (0-65) can further be simplified to:

$$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{N}_{\infty} = -\mathrm{K}_{\mathrm{ac}} \cdot \mathrm{N}_{0}^{2} \tag{0-66}$$

As for t $\rightarrow 0$ the concentration N_{∞} is equal to the initial concentration N_0 this results in

$$\frac{1}{N_0 \cdot \Delta t} = K_{ac} \tag{0-67}$$

which can be interpreted geometrically according to Figure 6. The apparent coagulation coefficient K_{ac} is inverse proportional to the area spanned by the initial concentration N_0 and

²³ See section I.1.15 p. 77

²⁴ Which is also applicable for the simplified calculation of the coagulation coefficient K.

the time Δt gained by section of the tangent in N₀ with the x-axis²⁵. The resulting apparent coagulation coefficient K_{ac} is then a function of the initial concentration N₀. With least mean squares fit of equation (0-64), the coagulation coefficient K and the diffusion frequency L₀ results.

Figure 6 Graphical method to determine the apparent coagulation coefficient K_{ac} according to equation (0-67). The method is described in the text.

I.1.8 Predicted application of the measurement of the quantity K

As the coagulation constant K is determined experimentally, other quantities can be calculated. To characterize the fractal properties of particles a method for determination of the fractal dimension D_f and the primary particle d_{p0} , is sketched shortly. The experimental results for K as the resulting D_{f} , and dp_0 can then be compared with numerical simulations for the evolution of fractal aggregates in this field, see e.g. (Kostoglou and Konstandopoulos 2001).

I.1.8.1 Fractal dimension determination

The way of determining the fractal dimension shall be described in short. In the Brownian regime²⁶ the equation (0-27) can be transformed for two different particle diameters to:

Development of the CMD for the coagulation coefficient measurement

²⁵ This is a result of the tangent in equation (0-66) for $\gamma \rightarrow 0$.

 $^{^{26}}$ Particles (much) larger then the mean free path λ , or where the Stokes-Einstein relation for the diffusion coefficient is valid.

(0-68)

$$\frac{\mathrm{d}_{p1}}{\mathrm{d}_{p2}} = \frac{\mathrm{K} \left(\mathrm{d}_{p1}\right) \cdot \mathrm{D}\left(\mathrm{d}_{p2}\right)}{\mathrm{K}\left(\mathrm{d}_{p2}\right) \cdot \mathrm{D}\left(\mathrm{d}_{p1}\right)}$$

Both the coagulation constant and the diffusion constant are a function of the particle diameter. For this purpose the coagulation constant has to be measured for monodisperse particles. Next the definition equation of the fractal particles (0-10) can be put for this condition to:

$$\frac{N_{p1}}{N_{p2}} = \left(\frac{d_{p1}}{d_{p2}}\right)^{D_{f}}$$
(0-69)

Together with (0-68) and solving for the fractal dimension D_f we get:

$$D_{f} = \frac{\ln\left(\frac{N_{p1}}{N_{p2}}\right)}{\ln\left[\frac{K\left(d_{p1}\right) \cdot D\left(d_{p2}\right)}{(K\left(d_{p2}\right) \cdot D\left(d_{p1}\right))}\right]}$$
(0-70)

Assuming, that no particle loss at the wall occurs, that $N_{\infty,i}$ is referred to the same volume V and no primary particles are generated, then the number of all primary particles $N_{p,primary}$ in a closed volume V stays constant for fractal growth²⁷. Let be the index i=1 the state at t and i=2 the state t+ Δt , then according to equation (0-71) the gas particle concentration $N_{\infty,i}$ decreases whereas the average particle number N_{pi} in each fractal particle increases, and the total primary particle concentration $N_{\infty,primary}$ is constant for coagulation neglecting other particle losses. Equation (0-71) is then for this case the population balance equation for primary particle concentration $N_{\infty,primary}$, which is defined by the ratio of the total number of all primary particles $N_{p,primary}$ and the reference volume V.

$$N_{p1} \cdot N_{\infty,1} = N_{p2} \cdot N_{\infty,2} = \frac{N_{p,primary}}{V} = N_{\infty,primary} = \text{const}$$
(0-71)

As N_{pi} is inverse proportional to the particle concentration for coagulation the unknown ratio for N_{pi} is:

$$\frac{N_{p1}}{N_{p2}} = \frac{N_{\infty,2}}{N_{\infty,1}}$$
(0-72)

For a coagulating aerosol equation (0-70) can then be written²⁸:

 $^{^{27}}$ This is also the case when the particle concentration N_{∞} stays constant.

 $^{^{28}}$ This is only valid for ideal particle coagulation without other particle losses; for the case of additional losses equation (0-71) has to be modified accordingly.

$$D_{f} = \frac{\ln\left(\frac{N_{\infty,2}}{N_{\infty,1}}\right)}{\ln\left[\frac{K\left(d_{p1}\right) \cdot D(d_{p2})}{(K(d_{p2}) \cdot D(d_{p1}))}\right]}$$
(0-73)

With equation (0-73) the fractal dimension D_f can be solved for two paired monodisperse coagulation constants $K(d_{pi})$, the particle concentrations $N_{\infty,i}$, and the diffusion constants $D(d_{pi})$ according to equation (0-23).

This method is only an approximation, as for the coagulation necessarily a polydisperse aerosol is developing. Therefore, it is not possible to determine the declining concentrations for one monodisperse aerosol with known concentrations, although monodisperse coagulation constants can be measured for monodisperse aerosols with different diameters. The effects of deposition may have also significant influence, which can be taken into account e.g. by equation (0-61).

I.1.8.2 Primary particle diameter

To characterize a fractal particle it is necessary to know the primary particle diameter dp_0 . It can be measured most commonly by electron microscopy or online with the optical dispersion quotient process (Zahoransky and others 2000).

When the primary particle diameter d_{p0} and also the fractal dimension D_f is known, N_p can be calculated from the definition equation (0-10) for a particle of size d_p . With the diffusion coefficient D_p the coagulation coefficient K_p for the particle of size d_p and the diffusion coefficient of the primary particle D_{p0} , the coagulation coefficient of the primary particle can be calculated with equation (0-74).

$$K_{p0} = K_{p} \cdot \frac{D_{p0}}{\left(exp\left(\frac{\ln(N_{p})}{D_{f}}\right) \cdot D_{p}\right)}$$
(0-74)

Evaluation of different coagulation coefficients K_p for different particle diameters d_p result in the same coagulation coefficient K_{p0} . In an iterative process a new primary particle d_{p0} can be assumed, leading to a better adaptation of the experimental values of K_p and the resulting K_{p0} in equation (0-74).

Description of the CMD

In this chapter the CMD will be introduced, first by its principles of operation, its physical, mechanical and electrical systems and total system setup over some fundamental issues with the software implementation of the whole CMD system.

Principle of operation of the CMD

The CMD system is a complete system of several measurement instruments combined through the LABVIEW integration process. The basic setup of the CMD is shown in Figure 7.

The first basic instrument for the CMD system is an instrument to measure the *particle size distribution*. For this purpose the SMPS 3081²⁹ (scanning mobility particulate sizer) was used with DMA (differential mobility analyzer) technology, and the CPC (condensation particle counter).

The second system is the settler system of the CMD, mainly a *constant concentration reactor*. One possible operation is as follows: First one sample is vacuumed into the settler. Then the time needed for decay of particle number concentration – the residence time for reaction (coagulation sedimentation, settling) – is measured. A (smaller) sample is taken from the settler. The last to steps are repeated n times. The difference between the measured concentrations, measured with the modified standard SMPS system, gives us evidence about the decay in concentration and hence the coagulation constant. The constant concentration reactor is therefore tunable in time and gives evidence about the real time behavior of coagulation of aerosols, especially in cases when the volume tends to infinity. Concerning experimental setup a limited volume has to be taken into account.

²⁹ SMPS system from TSI containing the classifier 3081, the DMA 3080 and the CPC 3010.

Setup of the CMD

I.1.9 System setup

The system used in this work consists mainly of two self contained systems: The *standard SMPS system* - used for comparison - and the introduced new *CMD system*.

I.1.9.1 Standard SMPS system

The standard SMPS system as stand alone application is depicted in Figure 8. First, there is first the SMPS classifier unit, with the orange case including the recycle flow sheath air control system and the DMA. The yellow case depicts the DMA unit transforming the polydisperse aerosol into a monodisperse one. Ambient air that passes the clean air filter

RLF2 is mixed with the monodisperse output of the transformer. This diluted particle concentration is then counted with the CPC (condensation particle counter) (Ivanišin and others 2005).

Figure 8 Flow chart of the standard SMPS system

I.1.9.2 CMD system

In the CMD system (Figure 9) the SMPS system is integrated. There are three basic subsystems with an optional fourth:

- 1. The Settler system
- 2. The Valve system
- 3. The SMPS system
- 4. An alternative measurement system e.g. for particle or mass concentration

In the actual setup the SMPS system and the valve system is in one case, and the settler system in another³⁰. The whole CMD system and its individual components are described in (Bakk 2005; Brugger 2005) in detail.

The settler system is a system with a constant concentration reactor also known as "the accordion"³¹. It is a variable volume reactor whose volume is varied by a stepper motor M1 (Figure 9) with connected gear³². On the top and on the bottom there are magnetic valves V7, V8 for shutting in the aerosol probe to maintain a constant thermodynamic state of the aerosol system. A total pressure sensor p_2 is mounted on the top. A differential pressure d_{p3} , a temperature T_7 and a humidity sensor ϕ_1 is mounted on the bottom of the settler.

The valve system consists of the magnetic two way valves V1-V6 and the flow sensor V_{p4} , which is passed in the most of the paths. The flow sensor has a high measurement accuracy, as has been shown by comparison to a primary bubble flow meter (Bakk 2005; Brugger 2005). Two manual ball valves VM1-VM2 also have been integrated. They allow for (VM2) the optional filtering the inlet air of the whole system through the filter RLF1, and thereby cleaning the whole system, which is important for cleaning the settler and for (VM1) measurement with an alternative measurement system instead of the CPC. The regulating needle valve DRV1 is used to manually set up the filling flow rate of the settler. A one direction valve (RSV) to protect the CPC has also been integrated (Brugger 2005)³³.

The SMPS standard system - consisting of the DMA classifier, CPC and the pump has been modified by extending the connecting tube from "SMPS mono out" to "CPC tube" with the valve system, as well as the SMPS sample inlet "SMPS in". The needle valve DRV1 together with a clean air filter RLF2 is regulating the sample flow that is vacuumed from the DMA and the filter RLF2 through the CPC. The temperatures for the cabinet T₁, for the sheath flow recycle T₂, as well as the absolute pressure in the classifier unit p₂ and the flow rates for the sample flow V_{p1} and the sheath flow V_{p2} are measured and transmitted via the serial interface to the monitoring PC and continuously logged for the measurement mode. The same takes place with the particle size concentration dN^{34} of the CPC.

Development of the CMD for the coagulation coefficient measurement

³⁰ The settler system can be fully closed for future temperature regulation.

³¹ Oral note of A. Konstandopoulos, Zurich 2005

³² The gear system is from ZIMM, <u>www.zimm-austria.com</u>: Specifications: BG:SHZ-02-LR, miniature spindle lifting gear i=12:1, 0.25mm / rotation

³³ For normal operation this valve is recommended to be removed because of high particle losses.

³⁴ This is the parameter rd of the CPC or the actual measured particle concentration [#/cm³]

I.1.10 Settler

The basic parameters of the coagulation *settler* are given in Table 2 and shown in Figure 10. The inner and outer diameters are given with $d_{i_SETTLER}$ and $d_{o_SETTLER}$. The length $L_SETTLER$ is the outer size of diameter. The width of one fold Ft of the settler calculates from the difference of the diameter divided by two. The number of folds Fz is L_{max} divided by Ft according to the producer³⁵. The length of the the minimal volume is restricted to the thickness of the folds and is approximately: $L_SETTLER_min=Fz*2.5/1000$. The settler area $A_{SETTLER}$ is defined by (0-1).

		Table 2 Main settler parameters		
	Name	Description	Value	Unit
	producer	Innoflex	~	[~]
	material	NBR-rubber; 1mm (temp. resistant - 90°C)	~	[~]
	Product	S21177; Scheibenbalg ³⁶ 144-204-500-144-144	~	[~]
n	d _{i SETTLER}	Inner diameter	0.144	[m]
ĭctic	d _{o SETTLER}	Outer diameter	0.204	[m]
ecif	L_SETTLER	Length	0.5	[m]
sb	Ft	Width of folds	0.030	[m]
	Fz	Number of folds	14	[~]
	L SETTLER min	Minimum size due to folds (.05m)	0.036	[m]
	A _{SETTLER}	Inner surface	0.500	[m ²]
	d _m	Theoretical mean diameter	0.174	[m]
	γ	Correction of d _m for real volume	0.833	[~]
	L _{min}	Minimum actual size	0.003	[m]
	L _{max}	Maximum actual size	0.428	[m]
dı	ΔL	L _{max} -L _{min}	.0425	[m]
sett	d ₇	Effective inner diameter	0.145	[m]
tual	d ₇ ,	Outlet diameter for pressure difference	0.006	[m]
ac	V ₇	Effective measured press out volume	7.0	[1]
	V _{7min}	Rest volume	0.05	[1]
	V ₇₀	Actual total volume	7.05	[1]
	V ₇₀ /S	Volume to surface ratio	0.0140	$[m^3/m^2]$
	S/V ₇₀	Surface to volume ratio	71	$[m^2/m^3]$

A _{SETTLER} =
$$\left[F_{z} \cdot 2 \cdot \left(d_{o_{SETTLER}}^{2} - d_{i_{SETTLER}}^{2} \right) + 2 \cdot d_{i_{SETTLER}} \right] \cdot \frac{\pi}{4}$$
 (0-1)

Table 2 Main settler parameters

³⁵ The settler is a standard "Faltenbalg" (bellow) from Innoflex. The material is made of NBR-rubber which is made of special antistatic mixture; the advantage is that particles will not be attracted due to static charge; the disadvantage is that the settler is not resistant to UV radiation or ozone.

³⁶ Bellow

Figure 10 Settler in the end switch positions

For the actual setup the approximated mean diameter d_m is corrected with the numerically derived γ resulting in the effective settler diameter d_7 . L_{min} and L_{max} are the lengths in the end positions of the settler³⁷. The volumes of the settler are defined in (0-21). The effective volume that can be used for a number of measurements is V₇. It is the volume that can be pressed out by the stepper motor. The minimum volume is V_{7min}. The actual total free volume of the settler is V₇₀ which is relevant for filling the settler.

$$V_{7} = \left[\left(d_{m} \cdot \gamma \cdot L_{max} \right)^{2} + d_{i_SETTLER}^{2} \cdot L_{min} \right] \cdot \frac{\pi}{4} \cdot 10^{3}$$

$$V_{7min} = d_{i_SETTLER}^{2} \cdot \frac{\pi}{4} \cdot L_{min} \cdot 10^{3}$$

$$V_{70} = V_{7min} + V_{7}$$

$$(0-2)$$

The ratio between total area and volume "V/S" and "S/V" are given for comparison with other experiments. They can also be used to compare measurements with the actual settler with a different S/V ratio, and hence a different deposition to coagulation ratio.

I.1.11 Effective flow rate³⁸

An experiment was set up to measure the flow rate Vp4³⁹ over time while pressing out the

³⁷ When the end switches are pressed, or when the settler has its actual maximum or minimum possible volume

³⁸ The relations for the leakage flow dilution in this section are restricted to path 3 (see section I.1.12). For a different path different relations are to be expected, especially for the quantities α and V_{pL} whereas V_{p7} should stay constant (quantities are explained later in this section).

³⁹ With the ASF1430 flow sensor from SENSIRION (<u>www.sensirion.com</u>).

Development of the CMD for the coagulation coefficient measurement

total volume of the settler. The input parameter SPFA (selection of constant speed factor)⁴⁰ for the stepper motor control is only dependent on the stepper motor hardware. As output, the flow rate Vp_4 and the total time t_{total} needed to press out the effective settler volume was measured. The results are given in Figure 11. Drawing a line from the chosen SPFA⁴¹ to the pink line and then going down to the brown curve yields the total time t_{total} and the flow rate V_{p4} . In Figure 11, the maximum deviations of the mean value for the flow rate measurement are also given. The start and stop measurement values, including acceleration of the flow rate, were not regarded for the mean value.

Figure 11 Flow rates Vp_4 of the flow sensor ASF 1430 for different times of emptying and filling the settler; The parameter SPFA denotes the speed factor of the stepper motor in the LABVIEW software. It is proportional to the stepper motor steps per time unit.

I.1.11.1 Settler volume determination

Assuming a settler volume V_7 leading to the *settler exhaust flow* Vp_7 when compressed. Vp_7 is only determined by the movement of the stepper motor and the connected gear, therefore it is

⁴⁰ The speed factor is the software parameter needed for the HASOTECH (<u>www.hasotech.com</u>) stepper motor control card. As it is approximately proportional to a defined number of steps per time unit, the SPFA is nearly linear with time.

⁴¹ Is needed as input parameter in the LABVIEW Software and is proportional to the number of steps with the stepper motor

very accurate. Vp₇ induces the *sample flow* Vp₄ and also the *leakage flow* Vp_L⁴² described by:

$$Vp_7 = Vp_4 + Vp_L \tag{0-3}$$

The inferred leakage flow Vp_L together with the sample flow Vp_4 is depicted in Figure 12 and Table 3, as sample and settler flow.

The volume flow Vp₇ can also be calculated from geometric considerations only. Taking the maximum range of the settler ΔL and the effective settler diameter d₇ the volume flow can be calculated,

$$Q = Vp_7 = \frac{1}{4} \cdot \Delta L \cdot d_7^2 \cdot \frac{\pi}{t_{\text{total}}}$$

$$\approx Vp_{70}/t_{\text{total}}$$
(0-4)

which can also be used to calculate the total time t_{total} with given volume flow. The volume flow Q of the settler is constant over temperature, as it is completely defined by geometry.

Figure 12 Settler flow rates as a function of the total time for pressing out the complete settler volume; Vp_4 is according to the measurement in Figure 11; The measured flow together with the calculated leakage flow Vp_7 (see text) is shown with the blue dotted line and shows a good accordance with the volume flow Q calculated from the settler geometry according to equation (0-4).

The total volume of the settler V_7 can be divided into the volume V_{7a} according to the sample flow and the volume V_{7b} according to the leakage flow, described in the next sections.

⁴² This equation is only valid when the densities ρ_4, ρ_7 are constant

Development of the CMD for the coagulation coefficient measurement

I.1.11.1.1 Sample flow

The effective flow rate experiment was used, according to Figure 13 and (0-5), for the determination of the total effective settler volume V_{7a}^{43} where ρ_4 is the density at the

$$V_{7a} = V p_4 \cdot \frac{\rho_4}{\rho_7} \cdot t_{\text{total}}$$
(0-5)

flow sensor or approximately in the SMPS and ρ_7 the density in the settler⁴⁴.

Figure 13 Calculation of the total effective settler volume according to the measurement in Figure 11 and equation (0-5).

The error for the ASF measurements is +-1 % of the measurement value, and is also shown in Figure 13. A constant straight line should have been expected. The curved shape indicates a leakage somewhere in the measurement line although none had been expected as intensive testing had been performed. The sequence of the measurements had no influence on the curve shape, which means that the leakage flow is reproducible. The approximated volume of the settler, achieved for the maximum measured total time t_{total} is $V_7=7[1]$, for all measurements. This was inferred from the decreasing *leakage flow* for long periods depicted in Figure 12⁴⁵.

I.1.11.1.2 Leakage and total flow

To consider a leakage flow we define the *leakage ratio* α where Vp_L is the leakage flow rate:

⁴³ When there is no leakage then $V_{7a}=V_7$

⁴⁴ For constant states $\rho_4/\rho_7=1$; the densities can be calculated with the later defined viral equation.

⁴⁵ The real volume is probably slightly higher, as can be calculated from the dimensions of the settler.

$$\alpha = \frac{V p_L}{V p_A} \tag{0-6}$$

The continuity equation can then be fulfilled according to Figure 14:

Figure 14 Scheme of the settler flow Vp_7 the leakage flow Vp_L and the measured flow Vp_4 for the mass balance

When we take into account that the total volume of the settler must be the integral of the total measurement time t_{total} according to,

$$V_7 = \int_0^{t_{\text{total}}} V_{p_7} dt = V_{p_7} \cdot t_{\text{total}}$$
(0-8)

where the flow rate Vp_7 can be regarded constant over the time t_{total} , as also the measured sample flow Vp_4 is constant over time, neglecting the flow acceleration we can write (0-7) for the settler volume total V_7

$$V_7 = V_{p_4} \cdot (1 + \alpha) \cdot \frac{\rho_4}{\rho_7} \cdot t_{\text{total}}$$
(0-9)

In the limiting case of no leakage flow $\alpha=0$ and (0-9) is reduced to (0-5). From (0-9) α can be resolved which is needed for the temperature adaptation of the flow rate⁴⁶:

$$\alpha = \frac{V_7 \cdot \rho_7}{V_{p_4} \cdot \rho_4 \cdot t_{\text{total}}} - 1 \tag{0-10}$$

The results from the experiments for α and other parameters are shown in Table 3 for t_{total}. The real flow rate in the settler Vp₇ can then be calculated by the known α and (0-7).

⁴⁶ See also section I.1.11.4 p.58

Development of the CMD for the coagulation coefficient measurement

Table 3 t_{total} = time for one run of the effective flow rate experiments; α = leakage ratio;
Vp_4 =sample flow rate; Vp_7 =settler flow rate; dp_3 =differential pressure settler; T_7 =temperature
settler, mean $T_{7m}=298.3$ [K]; mean $p_{2m}=.9819$ [bar]; $\rho_4=\rho_7=1.147$ [kg/m ³] orange values are
extrapolated:

	enti aportatori,															
$\mathbf{t}_{\mathrm{total}}$	[min]	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
α	[-]	0.207	0.151	0.119	0.096	0.079	0.066	0.054	0.045	0.036	0.029	0.022	0.016	0.010	0.005	0
Vp_4	[l/min]	1.162	0.610	0.418	0.320	0.260	0.219	0.190	0.168	0.150	0.136	0.125	0.115	0.107	0.100	0.094
Vp_7	[l/min]	1.403	0.701	0.468	0.351	0.281	0.234	0.200	0.175	0.156	0.140	0.128	0.117	0.108	0.100	0.094
dp_3	[Pa]	3.301	1.498	0.944	0.680	0.527	0.428	0.359	0.309	0.270	0.239	0.215	0.194	0.177	0.163	0.151
T_7	[°C]	25.3	25.3	22.8	23.0	24.3	25.5	26.3	26.4	25.9	25.3	24.9	24.9	25.4	26.2	26.5

I.1.11.2 Total time calculation

The time needed for emptying the settler t_{total} as a function of the measured sample flow Vp₄ can be seen in Figure 11 and calculated according to the polynomial fit equation there. Alternatively t_{total} can be calculated from equation (0-7) and (0-4) according to,

$$t_{\text{total}} = \frac{\rho_{7}}{\rho_{4}} \cdot \frac{\Delta L \cdot d_{m}^{2} \cdot \pi}{(1+\alpha) \cdot V p_{4} \cdot 4}$$
(0-11)

 t_{total} is then constant for one coagulation experiment, supposing constant sample flow and constant settler and ambient temperatures. α is a function of the sample flow Vp₄ and the actual leakage according to Table 3 and the defining equation (0-6).

I.1.11.3 Pressure drop

The pressure drop dp₃ for the total times was measured at the settler outlet, for "breathing in" (move UP) and "out" (move DOWN). The results are shown in Figure 15. There is a very small pressure difference of maximal ~0.9 [Pa] which has negligible influence on the density change of air. There is a hysteresis indicating that the breathing in is easier than the breathing out. A very good approximation can be given with a potential fitting although the measurement took place at very low pressure differences⁴⁷, and the whole experiment lasted several days. In addition similarity can be seen compared to the volume flow measurement. Indeed there exists proportionality between pressure drop and volume flow⁴⁸, hence the pressure drop measurement can also be used for volume flow measurement⁴⁹. A short method for determining the settler and the sample flow is introduced in the following.

 $^{^{47}}$ The measurement range of the differential pressure sensor is ± 100 [Pa].

⁴⁸ The ASF 1430 sensor from Sensirion uses this relationship.

⁴⁹ e.g. after calibration with the *bubble flow meter*.

Figure 15 Pressure difference measurements for the sensor ASP 1400 for different times of emptying and filling the settler.

I.1.11.3.1 Sample flow determination from the pressure difference measurements

When we assume no leakage flow from the settler to the ambient air, and no friction we can calculate, from the Bernoulli equation, the settler flow Vp₇, which will occur according to the measured pressure difference $\Delta p=dp_3$:

$$Vp_{7} = \sqrt{\frac{\left|\Delta p\right|}{\rho_{7}} \cdot \frac{d_{7}^{4} \cdot 2 \cdot \left(\frac{\pi}{4}\right)^{2}}{\frac{1}{\alpha^{2} \cdot \left(\frac{d_{7}}{d_{7}}\right)^{4}} - 1}}$$
(0-12)

The effective settler inner and outer diameters⁵⁰ are d_7 and d_7 ' respectively. The density is ρ_7 for isothermal differential pressure measurement and α° is the *contraction number* e.g. according to (Oertel 2001)⁵¹. Equation (0-12) can be simplified with the assumption that $d_7 >> d_{7'}$ leading to:

$$Vp_7 = \alpha \sqrt{|\Delta p|} \cdot \frac{d_7^2 \cdot \pi}{2 \cdot \sqrt{2 \cdot \rho_7}}$$
(0-13)

To allow for the measured flow including leakage flow a *differential pressure correction factor* κ is introduced. Equation (0-13) then becomes:

⁵¹ p.153

⁵⁰ At the differential pressure measurement site.

Development of the CMD for the coagulation coefficient measurement

$$\operatorname{Vp}_{7} = \alpha \left(\left| \Delta p \right| \right)^{\frac{1}{2} + \kappa} \cdot \frac{d_{7}^{2} \cdot \pi}{2\sqrt{2 \cdot \rho_{7}}}$$
(0-14)

With this equation from the differential pressure measurement the volume flow in the settler Vp_7 can be calculated. Assuming no density difference between settler and flow measurement also the sample flow rate Vp_4 can be calculated⁵². The fitted parameters for (0-14) and the pressure drop (Figure 15) are given in Table 4 for the state in Table 3.

Table 4Parameters of equation (0-14) to determine the settler flow Vp_7 and the sample flow
 Vp_4 from pressure difference $dp_3 = \Delta p$ of Figure 15.

Flow rate	∆p	α°	К
Vn-	UP	0.3258	0.4826
v p ₇	DOWN	0.2197	0.3773
Vn.	UP	0.2822	0.4142
v P4	DOWN	0.1957	0.3162

I.1.11.4 Pressure and temperature dependence

I.1.11.4.1 Virial equation

The general pVT⁵³ behavior of *real* air can be described with the virial equation in (0-15), where B is the *second cross virial coefficient* of the N₂-O₂ air mixture which is -6.6 [cm³/mol] according to (Dymond and Smith 1980). ρ is the density of the gas, MG the molecular weight, R the general gas constant and p the pressure.

$$\rho = \frac{MG}{2B} \cdot \left(\sqrt{1 + \frac{4 \cdot B \cdot p}{R \cdot T}} - 1 \right)$$
(0-15)

The advantage of the virial equation is that the mixture rules can be inferred from statistical mechanics. In the literature mostly coefficients for pure gases and mixtures of two gases can be found. Virial coefficients for mixtures for three or more components are difficult to find.

I.1.11.4.2 Pressure differences

When we take (0-5) and apply (0-15) we can draw the conclusion that a pressure change of 1 [mbar] leads to 1% volume change of the settler. A differential pressure of this order of

⁵² Taking also the leakage flow according to equation (0-9) into account

⁵³ Pressure, Volume, Temperature

magnitude is much higher than the measured differences (see e.g. Figure 15), hence, it is not of importance for the flow rates.

I.1.11.4.3 Temperature

Temperature changes have a greater influence on the settler gas volume $V_{7.}$ A gas volume change of 1% at *standard state*⁵⁴ can be affected by ~3 [K] temperature difference. As the physical settler volume is constant, this leads to an increased/decreased sample flow Vp₄ in the measurement mode which has to be considered.

Under normal operation the temperature is constant in the settler as during the measurement in the SMPS, CPC. In case of future investigations of aerosols at higher than ambient temperatures, two cases can be investigated: A.) The probe is heated up in the settler B.) The settler is filled with an aerosol above ambient temperature. In both cases the aerosol is kept at a constant temperature and afterwards cooled down by a heat exchanger. In the following, method B is described more extensively.

I.1.11.4.4 Constant temperature settler and SMPS system difference measurement

As, due to safety reasons⁵⁵, the SMPS measurement is only possible up to a temperature of 50 [°C]. Higher temperature measurements have to be cooled down for particle concentration measurement.

The settler flow rate Vp₇ is physically determined by the stepper motor and consequently constant for all temperatures, at the same pressure (see also Table 3). First the aerosol is sampled at an above ambient temperature, then the valves are closed and the temperature is kept constant. Making a size distribution measurement, the flow is cooled down. The pressure stays approximately constant, but the density increases leading to a net <u>lower sample flow</u> rate Vp₄. The time t_{total} - e.g. for the effective flow rate experiment see p.51 ff. - stays the same. The *apparent particle concentration* increases as the volume flow is lower than at the original temperature in the settler. The total particles measured stay the same, the referred volume changes. For these reasons it can be concluded that for a given temperature difference between settler and SMPS-system $\Delta t=T_7-T_2$ the particle concentration has to be corrected⁵⁶.

 $^{^{54}}$ T_s=20 [°C] ,p_s=1013 [mbar]

⁵⁵ The radioactive source mounting could be damaged.

⁵⁶ In this consideration no particle concentration change due to particle loss (deposition, coagulation etc.) or formation (nucleation etc.) has been regarded.

→ CONCLUSION

A <u>positive temperature difference</u> between settler and sample flow will lead to a <u>decreased</u> <u>sample flow</u> and an <u>increased particle concentration</u> and vice versa.

→ METHOD FOR GAINING PARTICLE CORRECTION

For correcting the particle concentration, the first equation (0-7) is resolved for Vp₄ according to the temperature difference Δt , which is implicitly described with the density and the virial equation (0-15). Vp₇ and α are constant for each t_{total} according to Table 3. The calculated Vp₄ should then be identical with the measured one. The *flow rate correction factor* δ +1 is then Vp₇/Vp₄ which is also the correction factor for the real particle concentration. The *flow rate percentage increase* δ can then be written:

$$\delta = \frac{Vp_{7}}{Vp_{4}} - 1 = (1 + \alpha) \cdot \frac{\sqrt{1 + \frac{4B \cdot p_{1}}{R \cdot T_{2}}} - 1}{\sqrt{1 + \frac{4B \cdot p_{2}}{R \cdot T_{7}}} - 1} - 1$$
(0-16)

 p_1,T_2 is the pressure temperature state in the SMPS cabinet which is approximately the same as at the ASF 1430 sensor. p_2, T_7 is the state in the settler for the pressure and temperature and α is the experimental correction factor from Table 3, which is constant for a constant temperature at the flow sensor $T_4 \approx T_2$ and the leak at ambient air T_L .

In Figure 16 and Table 5 the dependency of the measured flow rate from the settler flow rate is given for different temperatures in the settler T_7 and a constant $T_4=20$ °C according to (0-7). In Figure 17 and Table 6 the percentage increase of the flow rate Vp₄ is given, to calculate the flow rate Vp₇ or to calculate the percentage increase of the particle concentration in the settler for $T_4=20^\circ$. The basic equation for this calculation is equation (0-16).

As can be seen $\delta = \alpha$ in Table 6 and Vp₄ in Table 5 equals to Vp₄ in Table 3 for T₄=20°C and T₇=20°C, as this is the isothermal case.

Figure 16 Volume flow Vp_4 at $T_4=20^{\circ}C$ as a function of different settler temperatures T_7 and the total measurement time t_{total} . The ambient temperature T_2 is also 20°C.

Figure 17 δ in % at $T_4=20^{\circ}$ C as a function of different settler temperatures T_7 and the total measurement time t_{total} . The ambient temperature T_2 is also 20°C.

t _{total}	[min]	15	20	25	30	35	40	45	50	55	60	65	70	75
T ₇ =0°C		0.449	0.343	0.279	0.235	0.204	0.180	0.161	0.146	0.134	0.124	0.115	0.107	0.100
T ₇ =10°C		0.433	0.331	0.269	0.227	0.197	0.174	0.156	0.141	0.129	0.119	0.111	0.103	0.097
T ₇ =20°C		0.418	0.320	0.260	0.219	0.190	0.168	0.150	0.136	0.125	0.115	0.107	0.100	0.094
T ₇ =30°C		0.404	0.309	0.251	0.212	0.184	0.162	0.145	0.132	0.121	0.111	0.103	0.096	0.090
T ₇ =40°C		0.391	0.299	0.243	0.205	0.178	0.157	0.141	0.128	0.117	0.108	0.100	0.093	0.088
T ₇ =50°C	[l/min]	0.379	0.290	0.236	0.199	0.172	0.152	0.136	0.124	0.113	0.104	0.097	0.090	0.085
T ₇ =60°C		0.368	0.281	0.229	0.193	0.167	0.148	0.132	0.120	0.110	0.101	0.094	0.088	0.082
T ₇ =70°C		0.357	0.273	0.222	0.187	0.162	0.143	0.129	0.117	0.107	0.098	0.091	0.085	0.080
T ₇ =80°C		0.347	0.266	0.216	0.182	0.158	0.139	0.125	0.113	0.104	0.096	0.089	0.083	0.078
T ₇ =90°C		0.337	0.258	0.210	0.177	0.153	0.135	0.121	0.110	0.101	0.093	0.086	0.080	0.075
T ₇ =100°C		0.328	0.251	0.204	0.172	0.149	0.132	0.118	0.107	0.098	0.090	0.084	0.078	0.073

Table 5 Vp_4 at $T_4=20^{\circ}C$ as a function of the settler temperature T_7 and the total measurement *time* t_{total} *and* Vp_7 =*const according to Table 3*

Table 6		δ in % at $T_4=20$ °C as a function of T_7 and the total measurement time t_{total} ; Vp_7 is const according to Table 3.										5	
t _{total} [min]	15	20	25	30	35	40	45	50	55	60	65	70	75
T ₇ =0°C	4.2%	2.2%	0.6%	-0.7%	-1.7%	-2.7%	-3.5%	-4.2%	-4.8%	-5.4%	-5.9%	-6.4%	-6.8%
T ₇ =5°C	6.1%	4.0%	2.4%	1.1%	0.1%	-0.9%	-1.7%	-2.4%	-3.0%	-3.6%	-4.2%	-4.7%	-5.1%
T ₇ =10°C	8.0%	5.9%	4.3%	2.9%	1.8%	0.9%	0.1%	-0.6%	-1.3%	-1.9%	-2.4%	-2.9%	-3.4%
T ₇ =15°C	9.9%	7.8%	6.1%	4.8%	3.6%	2.7%	1.9%	1.1%	0.4%	-0.2%	-0.7%	-1.2%	-1.7%
T ₇ =20°C	11.9%	9.6%	7.9%	6.6%	5.4%	4.5%	3.6%	2.9%	2.2%	1.6%	1.0%	0.5%	0.0%
T ₇ =25°C	13.8%	11.5%	9.8%	8.4%	7.2%	6.3%	5.4%	4.6%	3.9%	3.3%	2.7%	2.2%	1.7%
T ₇ =30°C	15.7%	13.4%	11.6%	10.2%	9.0%	8.0%	7.2%	6.4%	5.7%	5.0%	4.4%	3.9%	3.4%
T ₇ =35°C	17.6%	15.2%	13.5%	12.0%	10.8%	9.8%	8.9%	8.1%	7.4%	6.8%	6.2%	5.6%	5.1%
T ₇ =40°C	19.5%	17.1%	15.3%	13.9%	12.6%	11.6%	10.7%	9.9%	9.2%	8.5%	7.9%	7.3%	6.8%
T ₇ =45°C	21.4%	19.0%	17.2%	15.7%	14.4%	13.4%	12.5%	11.6%	10.9%	10.2%	9.6%	9.1%	8.5%
T ₇ =50°C	23.3%	20.9%	19.0%	17.5%	16.2%	15.2%	14.2%	13.4%	12.6%	12.0%	11.3%	10.8%	10.2%
T ₇ =55°C	25.2%	22.7%	20.8%	19.3%	18.0%	16.9%	16.0%	15.1%	14.4%	13.7%	13.1%	12.5%	11.9%
T ₇ =60°C	27.1%	24.6%	22.7%	21.1%	19.8%	18.7%	17.8%	16.9%	16.1%	15.4%	14.8%	14.2%	13.6%
T ₇ =65°C	29.0%	26.5%	24.5%	23.0%	21.6%	20.5%	19.5%	18.7%	17.9%	17.2%	16.5%	15.9%	15.4%
T ₇ =70°C	30.9%	28.3%	26.4%	24.8%	23.4%	22.3%	21.3%	20.4%	19.6%	18.9%	18.2%	17.6%	17.1%
T ₇ =75°C	32.8%	30.2%	28.2%	26.6%	25.2%	24.1%	23.1%	22.2%	21.4%	20.6%	20.0%	19.3%	18.8%
T ₇ =80°C	34.8%	32.1%	30.0%	28.4%	27.0%	25.9%	24.8%	23.9%	23.1%	22.4%	21.7%	21.1%	20.5%
T ₇ =85°C	36.7%	34.0%	31.9%	30.2%	28.8%	27.6%	26.6%	25.7%	24.8%	24.1%	23.4%	22.8%	22.2%
T ₇ =90°C	38.6%	35.8%	33.7%	32.0%	30.6%	29.4%	28.4%	27.4%	26.6%	25.8%	25.1%	24.5%	23.9%
T ₇ =95°C	40.5%	37.7%	35.6%	33.9%	32.4%	31.2%	30.1%	29.2%	28.3%	27.6%	26.8%	26.2%	25.6%
T ₇ =100°C	42 4%	39.6%	37 4%	35 7%	34 2%	33.0%	31.9%	30.9%	30.1%	29.3%	28.6%	27.9%	27.3%

I.1.11.5 Gas dependence

The settler flow Vp_7 is independent of the gas and constant, as it is physically determined by the geometry and the stepper motor control. The volume flow Vp_4 may vary due to a different pressure difference and hence a different leakage flow. The flow sensor for the flow Vp_4 has to be calibrated for the gas. This can be done, e.g., with a settler measurement (ideally) without leakage flow. Gas mixtures can be calculated, e.g., with equation (0-16), which is of importance for the leakage flow mixture calculation or, e.g., the complex operation "Polydisperse Coagulation II" (see section 0).

Operation of the CMD

I.1.12 Path concept

For the measurement of the particle concentration over time the path concept has been established. It denotes a certain configuration of the valves, leading to a fluid path in the tubing of the CMD. The path the fluid takes according to the setting of the valves is shown in Table 7, with the names according to Figure 9.

		8
Path	Short name	Detailed path
1	Probe Fill Mono	Probe in \rightarrow V1 \rightarrow ASF \rightarrow V2 \rightarrow SMPS classifier \rightarrow V3
		\rightarrow V4 \rightarrow V5 \rightarrow V7 \rightarrow Settler \rightarrow V8 \rightarrow V6 \rightarrow PU1 \rightarrow exhaust
2	Probe Measure ⁵⁷	Probe in \rightarrow V1 \rightarrow ASF \rightarrow V2 \rightarrow SMPS classifier \rightarrow V3
		\rightarrow V4 \rightarrow CPC \rightarrow V6 \rightarrow PU1 \rightarrow exhaust
3	Settler Measure	Settler \rightarrow V7 \rightarrow V5 \rightarrow V1 \rightarrow ASF \rightarrow V2 \rightarrow SMPS classifier \rightarrow V3
		\rightarrow V4 \rightarrow CPC \rightarrow V6 \rightarrow PU1 \rightarrow exhaust
4	Settler Count	Settler \rightarrow V7 \rightarrow V5 \rightarrow V1 \rightarrow ASF \rightarrow V2 \rightarrow V3 \rightarrow V4 \rightarrow CPC \rightarrow V6
		→PU1→exhaust
5a	Probe Fill Poly	Probe in \rightarrow VM2 \rightarrow V1 \rightarrow ASF \rightarrow V2 \rightarrow V3 \rightarrow V4 \rightarrow V5 \rightarrow V7
		\rightarrow Settler \rightarrow V8 \rightarrow V6 \rightarrow PU1 \rightarrow exhaust
5b	Settler Clean	Ambient air \rightarrow RLF1 \rightarrow VM2 \rightarrow V1 \rightarrow ASF \rightarrow V2 \rightarrow V3 \rightarrow V4 \rightarrow V5 \rightarrow V7
		\rightarrow Settler \rightarrow V8 \rightarrow V6 \rightarrow PU1 \rightarrow exhaust
6	Probe Count	Probe in \rightarrow V1 \rightarrow ASF \rightarrow V2 \rightarrow V3 \rightarrow V4 \rightarrow CPC \rightarrow V6 \rightarrow PU1 \rightarrow exhaust

Table 7CMD paths: green=filling or cleaning; orange=settler measuring; blue=like standard
SMPS measuring

The six paths are as follows:

 The path "Probe fill mono" serves to fill the settler with a probe of a specified diameter MDP (monodisperse particle diameter)⁵⁸. The air flow is vacuumed in through the SMPS classifier. The particle diameter of the DMA is set to the monodisperse filling diameter MDP with the CMD software.

⁵⁷ Or waiting for coagulation, deposition, sedimentation etc.

⁵⁸ Monodisperse means that the particle size distribution has a very narrow standard deviation.

Development of the CMD for the coagulation coefficient measurement

- 2. "Probe measure" is the standard path. It corresponds to the standard SMPS measurement with different residence times compared with the standard tubing and without valves in between.
- 3. "Settler measure" is the path for measuring the particle size distribution of the CMD. The pressed volume - achieved by the stepper motor motion - into the sampling line is the same as that one vacuumed off. The number and mass concentration in an ideally inert reactor stays constant without any reaction.
- 4. The path "Settler count" serves to measure the total particle concentration.
- 5. The path "Probe fill poly" is used to fill the settler with a polydisperse aerosol, cleaning with ambient aerosol (a) or for cleaning with particle free air (b).⁵⁹
- 6. The path "Probe count" is used to measure the number concentration of the aerosol, like measuring with the CPC alone.

The colors in Table 7 depict the differences in operation. The standard measurement paths comparable with the Standard SMPS system setup are blue. Filling or cleaning paths are green, and settler measuring paths are orange.

The Labview implementation of the paths is shown in Figure 18.

Figure 18 Labview implementation of the paths of the CMD

I.1.13 Operation concept

The paths have to be operated in a certain sequence, to get the right measurement series for calculation of the coagulation or deposition. There are now ten types of operation, stored in the variable GMEAMOD. The LABVIEW implementation is shown in Figure 19. They can

⁵⁹ Concerning the actual computer control the paths 5a and 5b are equal as VM2 is a manual valve.

be assigned to the complex or simple type according to Table 8. Complex denotes that several paths are used for accomplishing the operation.

Figure 19 Labview implementation of the operations of the CMD

Table	e 8 Operations of the CM	МD
Operation	name	type
1	Monodisperse Coagulation	Complex
2	Polydisperse Coagulation	Complex
3	Ambient Size Distribution	Simple
4	Settler Size Distribution	Simple
5	Ambient Concentration	Simple
6	Settler Concentration	Simple
7	Settler Cleaning	Simple
8	Monodisperse Filling	Simple
9	Polydisperse Coagulation I	Complex
10	Polydisperse Coagulation II	Complex

Each operation is explained in detail in the following sections.

I.1.13.1 Complex operation types

The actual complex operation types are depicted in Figure 20 and Figure 21, the bold words denote the operations. They are:

- 1. Monodisperse Coagulation and
- 2. Polydisperse Coagulation.
- 3. Polydisperse Coagulation I
- 4. Polydisperse Coagulation II

I.1.13.1.1 Mono- and Polydisperse Coagulation

The flow chart for the first two operations 1 & 2 is shown in Figure 20. For the operation "Monodisperse Coagulation" first the settler is cleaned with path 5. Either the clean air filter RLF1 is used setting the manual valve VM2 or ambient air is filled into the settler. The subsequent step is to fill the probe into the settler, setting a monodisperse diameter MDP at the DMA. For the operation "Polydisperse Coagulation" the settler is first filled with a polydisperse probe at the "probe in" air inlet with path 5. Then with path2 the valves V7-V8 are closed to keep a constant settler probe. Then enough time is given to allow for the coagulation in the settler.

For mono- and polydisperse coagulation measurement (complex operation 1 & 2) the sequence is now the same; first measuring the particle size distribution in path3, then waiting for coagulation. This procedure is done NSM (number of simple (single) measurements) times until the actual measurement is NSMA=NSM. The settler is then cleaned and returns to the starting end position.

Figure 20 The complex operations "Monodisperse Coagulation" and "Polydisperse Coagulation"

I.1.13.1.2 Polydisperse Coagulation I,II

The operations "Polydisperse Coagulation I" and "-II" use only the concentration measurements with the CPC without using the SMPS classifier. Hence with this method only the coagulation of a polydisperse aerosol can be determined.

The flow chart is depicted in Figure 21. First in both operations the settler is cleaned, and filled with path 5. This can be accomplished by first applying the single operation "Settler Cleaning", then switching the manual valve VM2 to "probe in". After filling path 5 the manual valve VM2 should be switched to the clean air filter again.

Then the particle concentration is measured with path 4. For the operation "Polydisperse Coagulation I" this is done when the settler volume has been emptied, then the initial state is reestablished. For the operation "Polydisperse Coagulation II" a certain time smaller than t_{total} for the counting measurement has to be entered in the Labview software for path 4. Path 5a serves then as dilution of the settler with clean ambient air, while the stepper motor is driving to the starting initial position⁶⁰.

Figure 21 Complex operations Polydisperse Coagulation I and II

The complex operation "Polydisperse Coagulation I" and "Polydisperse Coagulation II" refer directly to the theoretical justified coagulation coefficient retrieving methods given in I.1.7.4 and I.1.7.5 respectively. This theoretical foundation is then used in the experimental part in chapter 0 for evaluation of the coagulation coefficient.

I.1.13.2 Simple operation types

The simple operation types are denoted by the application of one path to one operation. They are depicted in Figure 22, with the operations in bold. Each operation can be repeated NSM

Development of the CMD for the coagulation coefficient measurement

⁶⁰ For the operation "Polydisperse Coagulation I" it is recommended for the current setting to make only one single measurement, as the filling operation has to be accomplished manually by VM2.

times. They can be used to measure a set of measurements manually, or e.g. for filling, cleaning etc. In general a complex operation should be implemented, when the sequence of paths is known, to fully use the capabilities of the LABVIEW automation. This is very important for reproducibility.

• The "Ambient Size distribution" operation measures the size distribution that can also be measured with the standard SMPS system. The residence time between SMPS classifier and CPC is longer, hence the parameter td. The residence time τ_4 (Figure 8) instead of τ_0 (Figure 9) has to be taken.

- The "Ambient Concentration" operation measures the total number concentration of the CPC from the ambient in, without any other device.
- The operation "Settler Size Distribution" measures size distribution from the settler, like in the complex paths individually.
- The operation "Settler Concentration" measures the particle number concentration of the settler alone.
- "Monodisperse Filling" denotes the filling of the settler with a monodisperse particle source.
- The operation "Settler Cleaning" denotes the cleaning with the clean air filter as noted above in the complex operation (setting by manual valve VM2). This operation can also be used to fill the settler with an aerosol at the "probe in" inlet, which is polydisperse or monodisperse in dependence of the aerosol source.

I.1.14 Labview software implementation

Implementation of the CMD integrates all valves, sensor measurements, the stepping motor control and the measurement instruments like the SMPS⁶¹ or the CPC of the Labview software. Additional hardware can be implemented by adding modules into the Labview platform.

In this section first a short overview is given of the most important features that were used for programming the LABVIEW main application. More details of the programming language can be found in (Jamal and Hagestedt 2001; National Instruments 2003; National Instruments 2004). Then an overview of the most important programming features and the main program modules⁶² is given: The main⁶³-, initialization-⁶⁴ and measurement-⁶⁵ program.

I.1.14.1 Structure

The basic principle is to program in modules. The detailed software implementation and the variables definition is given in the appendix and on the accompanying CD. The implemented CMD program makes use of the following features of Labview:

- Modules
- State Machines
- Parallel Processing

I.1.14.1.1 Modules

Modules, so called vi's (virtual instrument) split the task in logical operations, and they aim at keeping the overview over the total program architecture.

The modules were programmed for the sensors, the valves, and the measurement instruments first. For example, the previously introduced path concept was applied first in the basis valve control program.

⁶¹ SMPS 3081: System from TSI containing the classifier 3081, the DMA 3080 and the CPC 3010

⁶² In Labview, the subroutines are called sub-vi, each program is called a vi. The name refers to the file extension *.vi and means "virtual instrument".

⁶³ CMDC_Menu.vi

⁶⁴ CMDC_Initialization.vi

⁶⁵ CMDC_Measurement.vi

Development of the CMD for the coagulation coefficient measurement

The modules build the basis of the programming hierarchy, which have been built into a hierarchy of state machines and parallel processes for simultaneous measurement.

I.1.14.1.2 State Machines

A state machine is a LABVIEW program with certain architecture. It is implemented in a CASE programming structure. Different states are switched to, using a CASE for each state. The path and the operation concept were used as base for the state machine programming. The State machine is also useful in general program structuring. Different programs branching from the main program are also states of a state machine e.g. the main menu in Figure 23.

I.1.14.1.3 Parallel Processing

The exact parallel processing is implemented in LABVIEW with "while loops" by means of "notifiers", that are exchanging data between the while loops. These can trigger simultaneous measurement start, which is important for exact parallel measurement of the sensor and instrument data.

One exception is the serial measurement. Four instruments and sensors are plugged to one serial interface card. These are: SMPS, CPC, ASF, ASP. They respond in the same sequence as denoted, because the used serial card is not capable of parallel processing. As a consequence the minimum time interval of all measurements in parallel is approximately 3[s], which can be reduced by switching of sensors⁶⁶.

I.1.14.2 Main menu

The main menu can be seen in Figure 23. In this case each button denotes a separate state in the state machine. There are four programs that can be called:

- 1.) *Initialization*: This program serves for initialization and control of all sensors the stepper motor and the valves.
- 2.) *File*: This program chooses the measurement protocol file. A standard file "Testxx.xls" can be chosen by the button Standard file.
- 3.) The button "*All measurements*" calls the sub-vi "CMDC Measurement"

⁶⁶ Variable SM in Figure 50

4.) Coagulation Coefficient is not yet programmed, and should serve for the automatic statistical evaluation of the measurements including the calculation of the coagulation coefficient.

Figure 23 Main application window of the CMD-Program: "CMDC_Menu.vi"

I.1.14.3 Initialization

The program window for the Initialization vi is shown in Figure 24. There are initialization and or control programs for the CMD accessible. The programs are briefly described as follows:

SMPS

INIT: This program initializes the sheath flow rate of the SMPS

BASIS: Most of the measurement values available from the SMPS can be seen. They are read out from the SMPS microcontroller via RS232 (serial interface). They are identical with the information available at SMPS display.

CPC STATE: Reads all the measurement values available for the CPC via RS232.

CMDC_Initialization	n.vi			×					
	CMDC	Version C	1.1 (C) Bernhard Heiden 2005						
	Coagulation Measurement Device								
	INITIALIZATION								
	SMPS Init Basis	ASF	STATES						
	CPC	ASP	DAQ						
	State	MEASC	P2T7C						
	STOP	MEASC							

Figure 24 Application window of the CMD-Program: "CMDC_Initialization.vi"

- ASF INFO: Reads out the information of the ASF flow sensor via RS232
- ASP MEASC: Makes a measurement of the ASP differential pressure sensor via RS232
- HUM MEASC: Makes a measurement of the humidity sensor SHT75 via RS232. The evaluation kit EK-H7 is used for the microprocessor control and serial connection with the sensor.
- STATES STATESC: Is used to test the different paths in section (I.1.12), setting the valves to the corresponding states.
- DAQ P2T7C: Data Acquisition Hardware from NI (National Instruments) SC-2345 (Signal conditioning). A Pt 100 platinum sensor T_7 and the pressure sensor HCX001A6V p₂ from the settler are accessed (see Figure 9).
- SM RUNC: Stepper motor control program. The different modes of accessing the stepper motor can be tested. The stepper motor control program from HASOTEC⁶⁷ (see Figure 54) has to be started before main program execution. It has to be taken care that the valves are in the right position (right path), before running the program. In case of continuous running of the stepper motor, the end switches from the settler can be used to stop the running of the stepper motor.

⁶⁷ The program "SM4xDRV.EXE" is the driver program of the HASOTEC SM-41 PCI card for the stepper motor control. This program has to be started and closed once before access in LABVIEW is possible.
I.1.14.4 Measurement

This is the main program for the CMD. All measurement automation tasks can be accomplished with this program. The control window can be seen in Figure 25. As this window contains all important information for measuring, it will be explained in detail, beginning with the variable name.

PATH: In the first deactivated line the path including the name of the protocol file previously chosen can be seen. It can not be changed.

COMMENT: In the next line a comment can be inserted for each measurement. It appears in the protocol file in the first line for each measurement that has been started with the start button.

ROTDRV: Number of rotations set by the manual valve DRV1. The number to flow rate relationship is attached at DRV1 on the instrument which is also shown as result of the calibration measurements (Figure 26, p. 82).

GMEAMOD: A dropdown list can be accessed in the variable *GMEAMOD*. Here all the operations possible can be chosen for the measurement (see section I.1.13). The operation that can be seen is the complex operation "Monodisperse Coagulation".

TIMER: The variable timer on the left side is deactivated, as the timer is chosen on the right side, explained later.

NSM: denotes the number of single (simple) measurement performed. Concerning simple measurements the number of these is denoted.

NSMA: is the actual count number of NSM.

SF (starting flag) is true when a measurement is running otherwise false.

TTOTAL: The total calculated measurement time due to the setting in seconds.

TTOTALA: The total actual measurement time in seconds that has passed.

PATHS: Denotes the actual path that is set.

PATHi: i=1..6 time information and control of the different paths; Each line is only active when the corresponding path is actually set. The STOP buttons STPi can end the control of the actual path. The path times are:

- 1: TMFILL/TFILLA: The monodisperse filling time and actual time of path
- 2: TCOAGUL/TCOAGULA: The monodisperse filling time and actual time of path
- 3: TSMEAS/TSMEASA: Settler measuring path and actual time of path
- 4: TCOUNT/TCOUNTA: Settler counting time and actual time of path
- 5: TPFILL/TPFILLA: Polydisperse filling or settler cleaning time and actual time of path
- 5a: TDILUTE/ TDILUTEA: Settler diluting time and actual time of path
- 6: TPCOUNT/TPCOUNTA: Polydisperse counting time and actual time of path
- V1-8: Depicts the actual setting of the valves ON/OFF=LIGHT GREEN/DARK GREEN together with the path.
- SPFA: is the setting of the speed of the stepper motor, either turning the button or setting the value. The speed factor SPFA corresponds to a flow rate shown in Figure 11 p.52.
- MB?: Is a LED for showing the activity of the stepper motor.
- STOPIL: Stops the run of the stepper motor; once stopped it cannot be started again in the same run
- UP/DOWN: switch in the Stepper motor control cluster: This switch determines the direction of the stepper motor for path 3. In normal operation the switch is down for normal measurement. In the filling path 5 the stepper motor goes to the starting position.
- DPMIN/DPMAX: Minimum/Maximum diameter set at the SMPS for scanning mode in nm. This setting is only effective when the SDR (Select Diameter Range) switch is set to manual
- SDR: (Select Diameter Range) Switch of setting the diameter range to AUTO or manual.
 Auto denotes that the particle size range is set automatically according to the
 SMPS setting based on settings an measurement values for flow rate V_{p1} and the

EMDC_M	CMDC_Measurement.vi Front Panel												
<u>File Edit Or</u>	File Edit Operate Tools Browse Window Help												
⇒	Image: Provide the second s												
Ver	sion 1.2 (C) B	ernhard Heide	en 2005							το Ιο		E min 6 c	
	Condulation Measurement Device												
M	o a g u prodice	arra fu	Polydiana	cilicitic rea Capi	ulation	Maacu	roma	at.		ET 0	h 0	min 5 s	
, //L	mouisp	eise a i	roiyuispei	se coag	julation	measu	/ <i>e///e</i>	π.	TSCAN%	TSCON	10	TSCAN (s)	
СОМ	MENT							ROTDRV1	TSCAN				
							÷)	0	IDCAN	TSC/	ANA	TSCAN	
	GMEAMOD			1					TOSCAN			TOSCAN	
	Monodispe	rse Coagulatio	n	Path1 - P	robe fill monoc	dispers				0		(A) 5	
	/		MERMOD	_					TISCAN	T1S	CANA	T1SCAN	
				V1-8			90				_ 1	() 10	_
	TIMER (ms)	N5MA	NSM	- V	1 V2 V3 V	/4 V5 V6	V7 V8			CLOS	E		
	1000	1	÷ 5	1					1				
	5F	TTOTALA	TTOTAL		SPFA	Speed	EActor for	Sten-ner	dp3 (Pa)	T6	(°⊂)	OK?	
	•	9569.4	33	- 35 - 30	55	5	/E fact /	otor Card		0			
e	P ATHS Path2 - Probe	e measure. IN	IT or STOP	25		60 65 DOWN	(Urasin Al	MB?	-2 (mbay)	: : : : т7	(97)	OK2	1-1
				15-		- <mark>7</mark> 0 🕽 🕚	J 40		40.37	2	(-C) 6	- Ö	
		TMFILLA	TMFILL	10		75			Ļ				
STP1	<u>PATH 1</u>	TCOAGULA	TCOAGUL						phi1 (%)	та	8 (°⊂)	OK?	
STP2	<u>PATH 2</u>	3	(<u>/</u>)3						40.37	2	6		
		TSMEASA	TSMEAS	DPMIN	DPMAX	Selec	t Diameter	Range					
STP3	<u>PATH 3</u>	3	E SCOLINIT	- e) o	e (ro	SCS	Vp4s (sccm	n/min) Vp	94 (l/min)	OK?	
STP4	PATH 4	1 TSCOUNTA		DP	RD (+	#/cm^3) 🖣		~	40.37	2	6		
		TPFILLA	TPFILL	116.4	0.00	MAN	Pace a	irticle size	0.04		Cl		
STP5	<u>PATH 5</u>	1		SCTA		(s)	LINEAR	Jacing	VP1 0.04	·	npactor ri neath flov	vrate (lpm)	
STP6	PATH 6	TPCOUNTA		dtmin	9		,		P1 958	.3 51	MPS press	ure (mbar)	
	<u></u>	1 TDILLITEA	TDILUTE	- 🗧 1000	minima (500-1)	l timestep 000 ms)			T2 29	Sł	neath flov	v temp. (°C)	
STP5a	<u>PATH 5a</u>	1		PC? (%	6)				T3 32.9) 51	MPS cabin	et temp. (°⊂)	
				DPMINA	DPMAXA	NA	N		MDP (nm) _{cak}	Diseaker	in an of OK?	
	START		STOP	11.36	641.7	0	0		- ÷o	Mor	nodispersi	e O	
									J	par	acie rilling		
•													

impactor. When the flow rate is small the impaction is low and hence the maximum diameter is high.

- DP: Is the actual set diameter of the CMD software at the SMPS, it is determined corresponding to the time plan and the settings for DPMIN/DMAX and PSS.
- RD: Is the actual read particle size concentration of the CPC [#/cm³]
- SCT/SCTA: Scanning time beginning from the setting of DPMIN at the SMPS classifier and actual time
- PSS: Particle Size Spacing mode: LINEAR/LOGARITHMIC; Depending on the mode the particle diameter difference Δd_p between scanning intervals is calculated in the manner of equal distances for the LOGARITHMIC scales or for LINEAR size spacing in the linear scale.

dtmin: Equal to timer on the right setting (deactivated) (ms).

PC?%: Percentage of success for the actual scanning process.

- DPMINA/DPMAXA:Actual setting of the minimum/maximum diameter read from the SMPS in nanometer.
- N/NA: The number of N different particle size scans determined by the user setting and the actual number of the scanning diameter.

T0/TA/ET:Starting time, Difference time and actual time

- TSCAN/TSCANA: Calculated and actual total time for measuring path 3 set by the scanning times T0SCAN and T1SCAN.
- TOSCAN/TOSCANA: *Scanning start time* and actual scanning start time. For this time interval the path for the measurement path 3 is set waiting for the aerosol to flow into the SMPS. After this time, the scanning can begin.
- T1SCAN/T1SCANA: Time set for scanning mode and corresponding actual time at the SMPS.
- TIMER (ms): Sets the timing interval for the logging of the measurement data in the protocol file. It is restricted to approximately 3s for all sensors in operation.
- SNOT intern notifier (see above I.1.14.1.3, p.70). Variable indicating the states of the SCAN Modus.

TSCAN/TSCAN0/TSCAN1: Progress indicators of each scanning mode.

The LEDS on the right side denote the correct operation of the sensors. They can be partly turned off to increase measurement time interval TIMER in the variable SM (Figure 50).

- dp3(Pa)/ T6(°C): Actual sensor values for the differential pressure sensor ASP1400 dp3 and the temperature measurement on this sensor. T₆ represents not the ambient temperature.
- p2(mbar)/T7(°C): Actual NI-DAQ measurement of the pressure and the temperature in the settler.
- phi1(%)/T8(°C): Actual relative humidity measurement phi₁ and the corresponding temperature measurement on the sensor $T_{8.}$ These values can also be read on the digital display of the attached microcontroller evaluation kit EK-H2.
- Vp4s(sccm/min)/Vp4(l/min): Standard flow measurement with the flow sensor ASF1430. The corresponding actual flow rate V_{p4} [l/min] is calculated by means of the

measurements p_2 and T_7 , the standard state $T_s=20$ [°C] , $p_s=1013$ [mbar] and the ideal gas law.

The following measurement values are read from the SMPS classifier microcontroller:

1]
1

- VP2: SMPS sheath flow rate [l/min]
- P1: SMPS pressure [mbar]
- T2 : SMPS sheath flow temperature [°C]
- T3: SMPS cabinet temperature [°C]
- MDP(nm): Monodisperse particle diameter which is set for monodisperse filling of the CMD. The OK LED indicates that the command is sent successfully to the SMPS.

START: The start button starts the measurement series after setting all variables above.

STOP: This button is used to leave this program and go back to the main menu.

Fundamental considerations

I.1.15 Reactor characterization

The settler proposed is a *constant concentration reactor*. This is a reactor whose ideal concentration is constant. This can be explained by its operation. In the measurement mode the sample flow volume is vacuumed off the settler while simultaneously pumping it out. With this method

- mixing of the batch volume with ambient air
- dilution
- pressure and temperature change can be avoided.

Under the *ideal condition* of no coagulation deposition or settling of particles the mass m and the number concentration N is constant, explaining the constant concentration reactor (see Table 9).

The constant concentration reactor is comparable with a *discontinuous stirred tank reactor* $(dCSTR)^{68}$ (Moser 1988) with constant volume process. The concentration profile is a function of time and not of space. The reaction is the coagulation, deposition or settling of

⁶⁸ This is a batch reactor with a stirrer. First the reactor is filled discontinuously after the reaction it is emptied.

particles. The variable volume allows for a constant concentration which is comparable with a constant volume process for incompressible fluids, without reaction.

Under real conditions either deposition, coagulation or both will occur,⁶⁹ which is shown in Table 9.

Table 9

9 Classification of important ideal physical states relevant for the CMD

	Constant concentration	Deposition	Coagulation	Coagulation & Deposition
dN/dt	0	0	<>0	<>0
dm/dt	0	<>0	0	<>0

The number concentration gradient dN/dt can be measured with the CMD. For the mass, gradient dm/dt, e.g. a TEOM⁷⁰, or a filter measurement is necessary⁷¹.

Determining the decay in mass and number concentrations allows for distinguishing between deposition and coagulation as a function of measurement mode.

An advantage of the constant concentration reactor is that the pressure variation of the thermodynamic state is minimized (T, p=constant). This conserves, probably, the state of nanoaerosols also in the case of nucleation processes, as condensation and evaporation is a function of the vapor pressure, and hence of the thermodynamic state. Therefore it is expected that liquid aerosols can also be investigated.

With defined state transitions e.g. warming, additional insight in particle growth mechanisms is gained. A constant concentration reactor, like that presented here allows for investigation of the real aerosol like behavior at constant conditions for low concentrations with *tunable measurement uncertainty*⁷² in a systematic way.

I.1.16 Residence times

There are several paths in CMD each with several residence times according to the overall flow rate. This overall (sample) flow rate is factored in by the ASF flow sensor V_{P4} and the

⁶⁹ Settling can be neglected for nanoparticles except for long time ranges.

⁷⁰ Tapered element microbalance

⁷¹ The accuracy of the mass measurement has to be very high and or the measurement time has to be very long.

⁷² Depending on number concentration and the time of coagulation the coagulation measurement accuracy increases.

SMPS differential pressure measurement V_{P1} . The flow rates are decisive for the particle size distribution measurement for several reasons:

- They are limiting the process of possible measurement of coagulation
- They limit the range of measuring time, and parameter settings of the CMD, as e.g. filling time; scanning start time etc.
- They allow the correct interpretation and shifting measurement parameters especially the particle diameter of the size distribution.

The concept of residence time τ [s] is closely linked to the flow rate as can be seen of the defining equation:

$$\tau = \frac{V}{V_p} \cdot 60 \tag{0-17}$$

 V_p [l/min] is the general flow rate and V [l] is the volume. By means of the residence time a statistical mean time of particles in a certain volume is described, valid for any type of reactor⁷³. The SMPS sheath flow for example, is, in terms of process terminology, a recycle flow reactor. The CMD settler is, with respect to coagulation, a batch reactor, where the waiting time equals the residence time, with respect to filling a fed batch reactor.

Following the individual residence times and their dependencies are described for the whole CMD system.

I.1.16.1 Overall residence time for measurement

I.1.16.1.1 Standard SMPS system

The residence times for the standard SMPS measurement with the AIMS (Aerosol Instrument Manager Software)⁷⁴ software is given in Table 10. There is a short connector tube between the SMPS monodisperse output and the CPC. This tube leads to the residence time τ_0 , which is "included" as a standard factor **td** in the AIMS software, together with the residence time of the CPC (τ_6)⁷⁵. When a longer connector tube is used, there has to be a correction made to this factor, according to the equations given in chapter I.1.17.1 p.87.

Residence timePath τ_0 DMA out \rightarrow CPC in

Table 10Residence times for the standard SMPS system

⁷³ e.g.: batch reactor, fed batch reactor, recycle flow reactor and tube reactor

⁷⁴ original software for the SMPS system from TSI (<u>www.tsi.com</u>)

⁷⁵ See also in the subsequent chapter I.1.16.3 p.83 and I.1.16.4 p.86

$ au_3$	DMA in \rightarrow DMA out
τ_6	CPC in \rightarrow CPC

A second standard factor **tf** [s] is also calculated for each measurement⁷⁶, which is identical with the residence time τ_3 defined in (0-21). As τ_3 is dependant on the sheath flow and the sample flow rate it is very important to have a calibrated sample flow (e.g. with the bubble flow meter "Gilibrator 2" in the standard SMPS measurement. This is even more important as the integrated differential pressure flow measurement for the sample flow (V_{p1} [l/min]) shows a drift with time. Pollution leads to a different differential pressure, and hence a different flow rate. In the case of the measurement of cigarette smoke, the impactor had been polluted after the measurement of one cigarette with a 0.5 [mm] long "wire" approximately 1 [mm] in diameter, leading to a significant change in flow rate.

The wrong size distribution finally leads to a wrong particle diameter. A correction can be made afterwards according to (0-21), if the "real" sample and sheath flow is known.

Some remark is given to the use of the AIMS software. The parameters that are put in for the sample flow are decisive for the following size distribution calculation⁷⁷. It has to be taken care to take the actual sample flow values of the SMPS display or, for example, flow rates measured with the bubble flow meter. Otherwise the peak of the size distribution will be shifted. This is even more important as the SMPS sample flow measurements is sensitive to pollution.

I.1.16.1.2 CMD system

The most important residence times for the CMD system are given in Table 11.

	pains. These are part of afferent main pains listed t	n Table /.	
Residence time	Path	Main	Formula
		paths	
τ_1	Settler bottom \rightarrow SMPS in	3	V_1/V_{p4}
τ_2	SMPS in \rightarrow DMA in	3,1,2	V ₂ /V _{p4}
τ_3	DMA in \rightarrow DMA out	3,1,2	$V_{3}/(V_{p2}+V_{p4})$

Table 11Residence times for the CMD system and the starting and endpoints for the related
paths. These are part of different main paths listed in Table 7.

⁷⁶ This quantity is calculated automatically in the AIMS Software and can not be change by the user

⁷⁷ There is no possibility for the AIMS software to get measurement results from the SMPS as the data connection is only between computer and the serial interface of the CPC. The CPC itself is connected with the SMPS classifier by a data cable transmitting the signal for the DMA high voltage to be set.

$ au_4$	DMA out \rightarrow CPC in	3,2	V_4/V_{p4}
$\tau_5 = \tau_{1+} \tau_{2+} \tau_4$	Settler bottom \rightarrow DMA in & DMA out \rightarrow CPC in	3	$(V_1+V_2+V_4)/V_{p4}$
τ_6	$CPC \text{ in } \rightarrow CPC$	3,4,6,2	1.48 [s]
$\tau_{7,} \tau_{70}$	Settler top \rightarrow Settler bottom	5a,5b,1	V_7/V_{p4}
τ ₈ ≈ t _{FILL}	Ambient air \rightarrow Settler bottom	5a,5b	V_8/V_{p4}
τ_9	Settler bottom \rightarrow CPC in	4	V ₉ /V _{p4}
τ_{10}	Ambient air/probe in \rightarrow SMPS in	1,2	V_{10}/V_{p4}
τ_{11}	DMA out \rightarrow settler bottom	1	V_{11}/V_{p4}
τ_{12}	Ambient air/probe in \rightarrow CPC in	6	V_{12}/V_{p4}

I.1.16.2 Settler

There are three operating modes for the settler:

- 1. Filling
- 2. Waiting for Coagulation and deposition
- 3. Measurement

According to these modes different residence times are of importance.

The minimal *filling time* t_{FILL} (τ_8 [min]) for the settler is, at first approximation, the same as t_{total} in Figure 27⁷⁸, as this is the residence time for the settler in the fed batch operation mode. It is defined as:

$$\tau_8 = \frac{V_8}{V_{p4}} \cdot 60 \tag{0-18}$$

 V_8 [l] is the volume from the path between aerosol inlet including the total volume of the settler V_{70} [l], and V_{p4} [l/min] the filling flow rate, adjusted with the needle valve DRV1. Due to the separate needle valve DRV1 the flow rate can be higher than for the measurement mode, and so the minimum filling time is lower. The upper flow rate is limited to the maximum possible under the pressure in the settler. At a flow rate of 2.4 [l/min], the settler begins to shrink, and no safe operating mode is possible.

In Figure 26 the minimum filling time as a function of the flow rate V_{p4} and the number of rotations ROTDRV1 of the needle valve DRV1 is shown. The relation between V_{p4} and ROTDRV1 was gained experimentally (Bakk 2005)⁷⁹. Having one setting of the needle valve the flow rate can be gained from the blue curve. Drawing a line to the blue curve then straight down to the pink curve yields the corresponding minimum filling time on the left y-axis, for

⁷⁸ Assuming constant flow rate for filling and measurement mode

⁷⁹ p. 89

Development of the CMD for the coagulation coefficient measurement

complete filling of the settler. Due to incomplete mixing of the gas in the settler this time should be longer in any case.

Figure 26 Minimum filling time for the settler $\tau_{8.}$ The total settler volume was assumed with $V_{70}=7.05$ [l], the volume for the settler and the gas path before was $V_8=7.11$ [l]. On the right side the number of rotations, counted from the closed valve, of the needle valve DRV1 is related to the filling flow and hence to the minimum filling time τ_8 (see text for more details)

Waiting for Coagulation is determined by the waiting time t_{WAIT} in the software. This depends on the kind of experiments planned, and is important with regard to the expected results. This parameter is best planned by a prior rough estimation of particle concentration decay.

For *Measurement* operating mode the residence or total time t_{total} , of possible measurements with one probe in the settler, is given by (0-19) and Figure 27, where V_7 [l] is the effective volume of the settler, and V_{p4} [l/min] is the sample flow rate.

$$t_{\text{total}} = \frac{V_7}{V_{p4}} \tag{0-19}$$

The maximum measurement time t_{MEAS} for a number of NSM single measurements with the CMD is:

$$t_{\text{MEAS}} = \frac{1}{\text{NSM}} \cdot \frac{V_7}{V_{\text{p4}}} \cdot 60 \tag{0-20}$$

Equation (0-20) is depicted in Figure 27 for application and Figure 49 in the appendix for a broader time range. When the sample flow rate V_{p4} and the number of measurements is fixed then the total measurement time t_{total} of all single measurements can be seen in Figure 27 on the left side, and the maximum measurement time of one measurement run on the right side.

For example, for the sample flow rate $V_{p4}=0.3$ [l/min] and 8 measurements the total measurement time $t_{total} \sim 23$ [min] and each single measurement is ~ 170 [s] long.

Figure 27 Total measurement time possible when emptying the settler as a function of the sample flow Vp_4 and the number of the measurements (NSM) on the right y-axis; The total measurement time as a function of Vp_4 can be read on the left y-axis (calculation see equation (0-20)).

I.1.16.3 DMA

The sheath flow in the SMPS DMA is a recycle flow and hence enhances the sample flow. The residence time τ_3 from the voltage setting to the way out of the reactor is determined by:

$$\tau_3 = \frac{V_3}{V_{p1} \cdot \left(1 + \frac{1}{\zeta}\right)} \cdot 60 \tag{0-21}$$

$$\frac{V_{p1}}{V_{p2}} = \zeta \tag{0-22}$$

$$V_{3} = L_{DMA} \cdot \left(r_{a_{DMA}}^{2} - r_{i_{DMA}}^{2} \right) \cdot \pi \cdot 1000$$
 (0-23)

 V_3 is the total gas volume of the DMA according to (0-23) and Table 12, V_{p1} (equivalent to V_{p4}) is the sample flow, V_{p2} the sheath flow of the SMPS and ζ is the *sample to sheath flow volume ratio* of the DMA.

Table 12Parameters of	f the SMPS DMA re	elevant for the residence	time calculation (see text)
-----------------------	-------------------	---------------------------	-----------------------------

Name	Symbol	Dimension	Value
DMA Model	~	~	3081
DMA Inner Radius	r _{i_DMA}	[m]	0.00937
DMA Outer Radius	r _{o DMA}	[m]	0.01961

Name	Symbol	Dimension	Value
DMA Characteristic Length	L _{DMA}	[m]	0.44369
DMA air volume	V_3	[1]	0.41365

In Figure 28 equation (0-21) is depicted for the sample flow rate V_{p1} on the x-axis, the DMA residence time τ_3 on the y-axis and with the sheath flow rate V_{p2} as parameter. To gain a good dilution of the sample flow with clean sheath air flow a ratio of 1/10 is recommended for V_{p1}/V_{p2} . Hence, with a low sample and sheath flow rate, the residence time increases drastically. Therefore, for reducing the total residence times (measurement time) this ratio should be reduced, especially as the sample flow is low.

I.1.16.4 CPC

The residence time of the CPC and the tubing as a function of the sample flow V_{P2} can be seen in Figure 29 and Table 13. There is a constant residence time τ_6 in the CPC as the volume flow is constant 1[1/min]. The *total residence time* rd *of the standard path SMPS>CPC* including the residence time of the CPC was calculated with the AIMS software. Then, rd' was calculated according to Table 13. For this purpose, the constant volume V_{0S} ' and the residence time τ_6 had to be fixed. Out of this, the standard residence time of the tubing τ_{0S} and τ_{0S} ' can be calculated.

The actual standard tubing between "DMA out" and "CPC in", relevant for path 3, has a volume of approximately $V_0=0.0075 [1]^{80}$. Together with the sample flow V_{P4} , the residence time τ_0 results:

$$\tau_0 = \frac{V_0}{V_{PA}} \cdot 60 \tag{0-24}$$

The actual standard tubing between "Settler bottom" and "CPC in", relevant for path 4, has a volume of approximately $V_0=0.1[1]$. Together with the sample flow V_{p4} the residence time τ_9 results:

$$\tau_9 = \frac{V_9}{V_{P4}} \cdot 60 \tag{0-25}$$

The residence time τ_6 of the CPC alone is the same for the SMPS standard and the CMD measurement, whereas the path is longer.

Figure 29

e 29 Residence time for the CPC3010 and the standard SMPS tubing as a function of the sample flow V_{p1} (description see text).

⁸⁰ The volume is depending only on the length and diameter of the connecting tube.

V_{p2}	td	$ au_{0\mathrm{S}}$	td'	$\tau_{0S^{\prime}}$
[l/min][s]	[s]	[s]	[s]
1	1.779	0.296	1.767	0.284
0.9	1.810	0.327	1.799	0.316
0.55	2.007	0.524	2.000	0.516
0.4	2.198	0.714	2.193	0.710
0.3	2.430	0.947	2.430	0.947
V _{0S} '	[1]	0.00473	td'=V _{0S} '/V _{p2} *60+	+τ ₆
τ_6	[s]	1.4835	$\tau_{0S}\!\!=\!\!\tau_6\!\!-\!\!td$	
V_{p6}	[l/min]	0.0247244	$\tau_{0S}'=V_{0S}'/V_{p2}*60$)

The residence times for the path "(SMPS) DMA out \rightarrow CPC" for the actual standard SMPS measurement ($\tau_0 + \tau_6$) and the CMD measurements ($\tau_4 + \tau_6$) are depicted in Figure 30.

Figure 30 Residence times for the standard SMPS system $\tau_0 + \tau_6$ and the CMD system $\tau_4 + \tau_6$ or $\tau_9 + \tau_6$ as a function of the sample flow Vp_1 or Vp_4

I.1.17 Dilution

Dilution of the aerosol flow occurs in several cases of the measurement process. First, in the bypass filter of the CPC and second in the settler when the settler is not filled long enough.

I.1.17.1 Dilution in the CPC

In the CPC an inherent dilution of the sampling line takes place. The CPC inlet consists of a needle valve DRV3, a clean air filter RLF2 and a T connector for the sampling line. The CPC case inlet is regulated to a constant volume flow of $V_{p6}=1$ [l/min]. As a consequence, the

sample flow V_{p1} is always diluted, except in the case that the sample flow is 1 [l/min]. This means that the particle concentration has to be recalculated according to dilution. Under the assumption of no losses due to mixing equation (0-26), this gives the differential particle balance. The particle concentration dN0 is the measured particle concentration of the CPC in the time interval t+ Δt . The particle concentration of the filtered air is dN00. This term is assumed to be 0.

$$dN0 = dN \cdot \frac{V_{p1}}{V_{p6}} + dN00 \cdot \left(1 - \frac{V_{p1}}{V_{p6}}\right)$$
(0-26)

Then the effective particle concentration before dilution is:

$$dN = \frac{dN0}{V_{p1}} \cdot V_{p6}$$
(0-27)

I.1.17.2 Dilution due to incomplete filling

The residence time for the filling of the CPC is quite large especially when the filling flow rate is low and the total volume is filled in (compare Figure 26). When the filling time t_{FILL} is lower than the residence time τ_8 , then a mixing with the settler aerosol takes place. To determine the incomplete mixing, future experiments could be done, by measuring the aerosol mixing concentration as a function of incomplete filling time. This function would also reveal the time necessary for asymptotic filling of the settler in such a way that the settler concentration equals the probe concentration. Without further information about this fact, a safety factor **sff** for the filling time, e.g. sff=2 is useful:

$$t_{\text{FILL'}} = t_{\text{FILL}} \cdot \text{sff}$$
 (0-28)

I.1.18 Impaction, deposition and other effects

Inertial impaction is a function of several parameters like the gas velocity the size of the particles and the geometry. There are several aspects regarding impaction and deposition important for the CMD.

- Impaction can pollute the measurement equipment. This can lead to damage of the sensors, or distorted measurement values. Therefore an impactor before the inlet of the CMD is recommended.
- Concerning the magnetic valves, a small diameter leads to high velocities. Together with the geometry, impaction is most probably at higher sample flow rates. They should be avoided for this reason. Electrical ball point valves would be more effective in avoiding impaction, but they are costly (4 times higher prices).

- 3. The used PVC pipes are not ideally suited for tubing as they can cause higher deposition rates. Antistatic tubes might give better results concerning deposition, although the effect has not been shown to be significant in the experiments.
- 4. The flexible tubing has the disadvantage of a possible difference in flow resistance. Metal pipes on the other hand, would have the disadvantage of a high thermal conductivity, which might lead to condensation or phase transitions.
- 5. The thermophoretic effect could be used to avoid particle deposition, by heating the wall temperature some degree above the gas temperature.
- 6. As the valves are heated in operation the thermophoretic effect can be expected as a function of valve and gas flow temperature.
- 7. The settler is not resistant to UV radiation. That means experiments can only be made in the "darkness" of the black NBR-Settler. For investigation of UV and sunlight radiation a transparent and UV-resistant settler type should be used. Experiments of this type were made by Husar (Friedlander 2000; Husar 1971) showing significant coagulation due to smog with organic precursors.
- 8. Solvents of the settler diffusing could have an influence on both particle coagulation and particle concentration counting.
- 9. The CMD settler can also be optionally operated as a continuous stirred tank reactor (CSTR)⁸¹(Moser 1988)⁸². In this case, the settler is mixed by the stirrer and the particle size concentration measurement, e.g. path 2 is done with valves V7/V8 open. The optional valve VM3 is switched to "probe in" (Figure 9). This system has a residence time depending on the actual settler volume and the sample flow V_{p4}.

⁸¹ This reactor performance has a constant output concentration depending on the residence time and the initial concentration.

⁸² p. 113

Development of the CMD for the coagulation coefficient measurement

Measurements of the coagulation coefficient with the CMD

In this chapter, the experimental measurement of the coagulation coefficient K with the CMD is exemplified. By means of process automation a number of tasks can be performed, founded on the theory derived in the first chapter and the built CMD and its control as explained in the second chapter. Several applications are shown as first experimental tests of the CMD and the founding theory.

First, the determination of the coagulation coefficient of *monodisperse aerosols*⁸³ is shown. A soot aerosol was used produced by the CAST⁸⁴ particle generator. For this purpose a polydisperse aerosol⁸⁵ produced by the CAST was separated with the DMA into a monodisperse aerosol and then subsequent size distribution measurements were done.

Second, the determination of the coagulation coefficient of polydisperse aerosols is shown, first by the sequential size distribution measurement of an incense aerosol, then by the number distribution measurements by two different concepts⁸⁶. By measurement of the concentration, while emptying the whole settler, and discontinuously diluting and measuring the aerosol size concentration over a free specified time interval.

Finally, in all these cases the time dependant concentrations lead to the determination of the coagulation coefficient K.

Monodisperse aerosols

The CAST, having the advantage of producing a reproducible number size distribution, was used for a series of monodisperse measurements. For this purpose, the geometric mean

⁸³ A monodisperse aerosol is an aerosol with only one particle diameter. In reality this is an aerosol with a narrow size distribution (e.g. small standard deviation), whereas a polydisperse aerosol has a wide size distribution (e.g. large standard deviation).

⁸⁴ Soot particle generator for production of defined particle number concentrations from Matter-Engineering www.matter-engineering.com

⁸⁵ As combustion generated aerosols are polydisperse in general.

⁸⁶ Especially two different CMD operations: "Polydisperse Coagulation I" and -"II".

Table 14

diameter of the size distribution can be set with the CAST. There were two types of measurements made. One with the CAST setting of d_{pg} =85 [nm] and one with d_{pg} =160 [nm]. The first one produced an unimodal (see Table 14) the second a bimodal polydisperse size distribution.

Monomodal size distribution measured with the standard SMPS system and setting the

CAST diameter to $d_p=85$ [nm].						
Symbol	Description	Value	Unit			
d _{pg}	Geometric mean diameter	76.1	[nm]			
σ_{g}	Geometric standard deviation	1.60	\sim			
N_{∞}	Total concentration	1.04E+07	$[\#/cm^{3}]$			
	Impactor type(cm)	0.071	[cm]			
V_{p2}	Sheath flow	4	[lpm]			
V _{p1}	Aerosol flow	0.4	[lpm]			

To generate a reproductive number size distributions the burner of the CAST was in operation for at least half an hour. The subsequent aerosol was then stable for the rest of the measurements⁸⁷. For producing large amounts of aerosols, it was necessary to vacuum off the exhaust gas continuously⁸⁸. First, measurements with the AIMS Software were made then compared with the subsequent monodisperse CMD measurements with the same CAST setting.

A first method of getting the monodisperse coagulation coefficient is shown in the following for the CAST particle diameter setting of 160 [nm]. Before the CMD measurements, the size distribution of the CAST had to be stabilized for more than half an hour. All the residence times are given in Table 15 according to definitions of Table 11. The corresponding size distributions, measured with the CMD operation "Monodisperse Coagulation", are depicted in Figure 31 and Figure 32 for dN for different perspectives with and without logarithmic scale of the y-axis. The size distribution of measured particle concentration dN is plotted against the particle diameter. There was a bimodal size distribution although a monomodal one had been expected, possibly caused by pollution of the burner nozzle or the instability of large soot aerosols in the CAST. Also measurements with the aerosol one day later shown in Figure 32 were made.

⁸⁷ It is not possible to produce exactly the same number size distributions on different days.

⁸⁸ Some pollution of the exhaust gas with the ambient air occurred, as the system was not hermetically separated from the laboratory.

Table 15	Residence times for the CAST experiments #65 & #67; τ_1 is the time d_p is shifted to
concentration	because of residence time between DMA and CPC; τ_{II} is the time the raw data are
shifted to the be	eginning of measurement mode; V_{p2} is the sheath, V_{p2} is the sample flow and NSMA is
	the number of each single size distribution measurement.

V _{p2} [l/min]	V _{p4} [l/min]	NSMA	τ ₅ [s]	τ ₄ [s]	τ ₃ [s]	τ ₂ [s]	$ au_1$ [s]	τ ₀ [s]	τ_{I} [s]	$ au_{II}$ [s]
4	0.3579	#1	29.8	9.8	5.70	3.9	16.0	5.0	35.5	15.51
4	0.3551	#2	30.0	9.9	5.70	4.0	16.2	5.0	35.7	15.59
4	0.3551	#3	30.0	9.9	5.70	4.0	16.2	5.0	35.7	15.59
4	0.3551	#5	30.0	9.9	5.70	4.0	16.2	5.0	35.7	15.59
4	0.3551	#7	30.0	9.9	5.70	4.0	16.2	5.0	35.7	15.59
4	0.2031	#8	52.5	17.3	5.90	6.9	28.3	8.8	58.4	23.19
4	0.2031	#9	52.5	17.3	5.90	6.9	28.3	8.8	58.4	23.19

Figure 31 Monodisperse CMD measurement of the CAST setting $d_{pg}=160 \text{ [nm]}$; τ_l is the residence time before the aerosol flow enters the measurement site of the SMPS Classifier (experiment #65).

#65 CMD Monodisperse Measurement of the CAST dp=160nm

Figure 32 Monodisperse CMD measurement of the CAST setting $d_{pg}=160$ [nm]

The resulting total particle concentrations are shown in Table 16 and Figure 33. The initial measurement #1 has probably shifted to high concentrations due to the starting condition of the measurement. The second measurement reveals that there are quite high particle losses or dilution. Later I discovered that these losses were mainly due to the nonreturn valve where only 11% passed.

	-	-			
	t _{total} (min)	t(min)	N_{∞} (#/cm ³)		%
Bimodal polydisperse					
CAST distribution	~	~	6.88E+06	100	\sim
Measured					
monodisperse cutout	~	~	2.24E+05	3.3%	100%
#1	40	0	6.80E+04	2	30.4%
#2	44	4.0	2.42E+04	~	11%
#3	48	8.0	1.89E+04	~	8%
#5	56	16.1	1.84E+04	2	8%
#7	64	24.2	1.74E+04	2	8%
#8	1375	1335.2	1.99E+02	~	0.1%
#9	1379	1339.2	2.24E+02	~	0.1%

Table 16Particle concentrations of run #65& #67

Figure 33 Total particle concentrations N_{∞} of run #65

I.1.19 Control measurement

At the end of the measurement, the total concentration of the aerosol was measured. The results with the AIMS measurement and the standard SMPS system setup are depicted in Figure 34. The distribution was clearly bimodal. Three measurements #1-3 in a series gave reproducible results. As it is seen from the picture, there is some indication that the normal distribution is somewhat distorted, leading to a bimodal distribution. This might be the case due to pollution of the CAST dilution system, as it was the last measurement on this day.

Figure 34 Control measurement of the CAST measurement with the standard SMPS system for experiment #65

One day later there was another measurement made with the same probe, which had remained during this time in the settler. In the meantime also transport of the CMD to the laboratory had taken place. According to Figure 35 the distribution had reached background level. The peak of the lognormal size distribution was in the same region as the original aerosol, which indicates that everything had been deposited in the meantime.

Figure 35 CMD measurement one day after the soot measurements of experiment #65 with the same aerosol enclosed (experiment #67); the numbers #x refer to the usual different first measurement and #8-9 to the single measurement run of the monodisperse measurements (see Table 16); Dilution with ambient air had occurred.

I.1.20 Results: Smoluchowski coagulation plot

The Smoluchowski coagulation plot is given in Figure 36, the corresponding characteristic values in Table 17. The first two measurement points are regarded to overestimate the particle concentration due to a rest particle concentration in the tubing from primary sampling. The concentrations of the last sampling points yield a straight line in the Smoluchowski plot getting an apparent coagulation coefficient of $K_a=46.49*10^{-10}$ [cm³] which is in the same order of magnitude of the K_a values of Rooker and Davies (Rooker and Davies 1979).

Table 17Results for the parameters of the initial concentration N_0 , the apparent coagulationcoefficient K_a which is approximately the same as the coagulation coefficient K and Pearson'sregression coefficient r^2 of the monodisperse soot measurement (experiment #65); L was notdetermined because only one data set for K_a existed

N ₀	L	Ka	r^2
[#/cm ³]	[1/s]	[cm ³ /(#*s)]	[~]
2.24E+05	~	4.649*10 ⁻⁹	0.9363

Figure 36 Smoluchowski coagulation plot for monodisperse soot measurements with the CAST; $K_a=4.649*10^{-9} [cm^3/(\#*s)]$ (experiment #65).

Polydisperse aerosols

There were performed two principal types of measurements of the coagulation coefficient. First considering the size distribution measurement, second the particle concentration only.

I.1.21 Measurement of the coagulation coefficient of polydisperse aersols by means of a size distribution measurements - Incense Measurements

One measurement run of the coagulation coefficient of a polydisperse incense aerosol was made for approximately 140 [min], by means of sequential sized distribution measurement. The parameters of the measurement are given in Table 18. In Figure 37 and Figure 38 different views of the results of the complete measurement run is given. The operation "Polydisperse Coagulation" consists of subsequent particle number distribution measurements. The evolution in particle concentration for different size classes is given in Figure 37, for the whole particle size distribution in Figure 38.

Table 18Parameters important for CMD operation ,,Polydisperse Coagulation " and the
incense measurements in this mode.

Name	Value	Unit	Description
SPFA	8	~	Speed factor
V_{p7}	0.339	l/min	Settler flow
V_{p4}	0.310	l/min	Measured sample flow
α	0.029	\sim	Leakage ratio
V_{p2}	2.992	l/min	Measured sheath flow
V_{p1}	0.354	l/min	Measured sample flow

τ_6	1.48	S	Residence time CPC
V_3	0.41365	1	Volume inside the SMPS DMA
ζ	0.10365	~	Sample to sheath flow volume ratio of the DMA
$ au_3$	7.52	S	Residence time DMA
V_4	0.05540	1	Volume of air in the path between SMPS and CPC for the CMD
$ au_4$	10.72	S	Residence time settler DMA in
\mathbf{V}_1	0.0956	1	Volume of air in the path between Settler and SMPS in
V_2	0.0235	1	Volume of air inside the SMPS between input and DMA
τ_1	18.50	S	Residence time related to V_1
τ_2	4.55	S	Residence time related to V_2
$ au_{\mathrm{I}}$	20	S	Time d _p is shifted to concentration because of residence time between DMA and CPC
$ au_{\mathrm{II}}$	23	S	Time the raw data are shifted to the beginning of measurement mode
dilution	2.9	~	Dilution with respect to the raw data
t _{total}	1242	S	Time for emptying settler

Figure 37 Evolution of the sized distribution of different particle sizes over time measured with the CMD for incense and nine sequential runs NSMA=1..9 in the CMD operation "Polydisperse Coagulation". dN is the particle size measured with the CPC plus the correction for the dilution and d_p is the mobility particle diameter in nm (This is a different view of Figure 38).

Figure 38 Sized distributions measured with the CMD for the incense measurements for nine sequential runs NSMA=1..9 in the CMD operation "Polydisperse Coagulation". dN is the particle size measured with the CPC plus the correction for the dilution and d_p is the mobility particle diameter in nm.

In Figure 39 the calculated total concentrations from the fit with the logarithmic normal distribution are given. The measured size distribution shows, on the left side, a good correspondence with the logarithmic normal distribution. On the right side, the slope of the measured distribution is less steep than that shown for the fitted distribution and the measured data are cut off⁸⁹ going to large diameters. For a more accurate determination of the sized distribution and relating parameters a different fit would have to be taken, whereas the logarithmic size distribution is a good first approximation.

The correction for the relative volume of the settler has also been done Figure 39. It shows that for long coagulation times t_{COAGUL} it has nearly no influence on the concentration. This is, in general, the case when $t_{COAGUL} >> t_{MEAS}$, where t_{MEAS} is the measurement time of a single run⁹⁰.

⁸⁹ The cutting off could have been avoided by choosing longer time intervals for size distribution measurements in the set up of the operation "Polydisperse Coagulation".

⁹⁰ NSMAi, i=1.. NSM, NSM is number of single measurement runs.

Figure 39 Particle concentration decay of the incense measurements. The experimental values (crosses) are corrected for the particle concentration according to the position of the settler (circles). A three parameter fit of equation (0-47) and N_{∞} K and L is depicted with a dotted line.

In Figure 18, the parameters of the incense measurements are given for the resulting logarithmic normal distribution parameters. The resulting size distribution N_{∞} is also shown in Figure 39 together with the correction for the position of the settler γ and the three parameter fit of equation (0-47).

Table 19Parameters for the incense experiments and the 9 measurements NSMA=1..9; γ relates to the position of the settler (0=start position), t to the total time of the measurement relating to
the median diameter of the relevant data sets for NSMA_i (i=1..9). Parameters N_{∞} , d_{pg} and σ_{g} fitted for
the logarithmic normal distribution. The values for the mean total particle concentration N_{∞} over time
are also depicted in Figure 39.

Symbol	Unit	NSMA = l	NSMA=2	NSMA=3	NSMA=4	NSMA=5	NSMA=6	NSMA=7	NSMA=8	NSMA=9
γ	~	4.3%	12.5%	20.7%	28.9%	37.1%	45.3%	53.6%	61.8%	70.0%
t	[min]	0.65	17.5	34.35	51.2	68.05	84.9	101.75	118.6	135.45
N_{∞}	$[\#/cm^{3}]$	1.72E+05	1.21E+05	9.14E+04	7.12E+04	5.68E+04	4.20E+04	2.91E+04	2.19E+04	1.78E+04
$1/N_{\infty}$	$[cm^{3}/\#]$	5.82E-06	8.26E-06	1.09E-05	1.40E-05	1.76E-05	2.38E-05	3.43E-05	4.57E-05	5.61E-05
d_{pg}	[nm]	277.3	286.4	295.8	300.6	299.3	297.4	293.4	292.7	292.3
$\sigma_{ m g}$	~	1.58	1.56	1.54	1.54	1.54	1.54	1.56	1.55	1.54

The fitted parameters together with the regression coefficient are given in Table 20.

Results for the parameters N₀, K, L and Pearson's regression coefficient r², *of the incense measurement (experiment #107)*

		1	/
N ₀	L	К	r^2
[#/cm ³]	[1/s]	[cm ³ /(#*s)]	[~]
1.719E+5	2.37E-4	3.404E-8	0.998

I.1.22 Measurement of the coagulation coefficient of polydisperse aersols by means of a number distribution measurement

For the measurement of the coagulation coefficient K of polydisperse aerosols by means of a particle number measurement with the CMD, the complex operations "Polydisperse Coagulation I" and "–II" were used (see section 0). The theory derived in section I.1.7 is then applied.

I.1.22.1 Polydisperse Coagulation I (Method 4)

The fast coagulation method serves as control for the coagulation measurement. By means of a least mean square analysis of equation (0-61) for three parameters, N₀, L₀ and K these parameters can be fitted to the experimental data. For the complex operation "Polydisperse coagulation I" the settler is emptied once for each measurement within the time $t_{total} \approx 68$ [min]. The results for the raw measurement data are depicted in Figure 40.

Figure 40 Raw data for experiments #126-#129: Test for operation "Polydisperse Coagulation I" for determination of the coagulation constant, for two different types of candle lights and two different concentrations; The candle light with the flavor "Orangenpunsch" produce higher particle concentrations N_{∞} than the candle lights with the flavor "Winter Märchen".

For these measurements two different test aerosols with different concentrations were taken. The flavor "Orangenpunsch" (OP) and "Wintermärchen" (WM) were used with 10 and 6 candles respectively, resulting in higher particle concentrations approximately proportional to the number of candles. The yellow areas depict the delay due to the residence time $\tau_9+\tau_6$ the aerosol takes from the settler to the CPC measurement (compare section I.1.16.4 and I.1.17.1). As the volume flow was quite low, there was an inherent dilution due to the settler bypass filter. The total dilution ratio was approximately 10 according to the settler velocity (SPFA=26 compare Figure 11), the dilution ratio according to the measured flow V_{p4} only was 7.25, which is effectively the clean air dilution. The rest of the dilution is due to the leakage flow.

The results of the recalculated original concentration in the settler, together with the least mean squares fit, calculated in Mathcad[®] is depicted in Figure 41. The corresponding data values are shown in Table 22 and Table 21 for the AIMS and CMD measurement respectively. The coagulation coefficient K cannot be clearly assigned to the different types of aerosols although the regression coefficient is nearly 1 for every measurement, indicating the applicability of equation (0-61). In addition, the wall diffusion frequency L₀ is also underlying a change, due to the fitting procedure. For $\gamma \rightarrow 1$ the volume is also decreasing nonlinear. This effect was not further taken into account in equation (0-61) because it was assumed to be

small. Although fluctuation in the volume might explain deviations seen in the measurements (Figure 40 and Figure 41).

Table 21Results for the experiments #126-#129; On the left side, the results of the AIMSmeasurement for d_{pg} , σ_g and N_0 are given. They were repeated several times. On the right side, theresults of the coagulation experiments for the coagulation coefficients K and the parameters L_0 , N_0 and the regression coefficients r^2 are given. In the last row the ambient air measurements are given,which are a diluted mixture of both particle sources.

							0	1					
				Al	MS				CML)			
Experiment	Flavor	Candles	Mean geometric diameter	Geometric standard deviation	Total concentration	Initial particle concentration	Wall diffusion frequency	Mean wall diffusion frequency		Coagulation coefficient	Mean coagulationa coefficient		Pearson's regression coefficient
#	type	#	d _{pg}	$\sigma_{\rm g}$	N_0	N ₀	L ₀	L _{0m}		K	K _m		r ²
			nm	~	$\#/cm^3$	$\#/cm^3$	1/s	1/s		cm ³ /s	cm ³ /s		~
127	OP	10	85.1	1.73	4.98E+04	4.17E+04	9.39E-05		5	1.37E-08		8	0.995
128	OP	6	~	\sim	~	1.29E+04	2.10E-05	5.75E-05	E-0	4.854E-08	3.11E-08	E-0	0.990
129	WM	10	97.9	1.71	1.54E+04	7.62E+03	8.51E-06		66.	4.565E-08		.98	0.979
126	WM	6	~	~	\sim	4.50E+03	3.60E-05	2.23E-05	e	5.13E-08	4.85E-08	ς, μ	0.994
A	mbient	air	94.8	1.72	1.46E+04	~	~	~		~	~	~	~

Figure 41 Fitted results for experiments #126-#129; Test for operation "Polydisperse Coagulation I" for determination of the coagulation constant, for two different types of candles and two different concentrations; The candles with the flavor "Orangenpunsch" (OP) produced higher particle concentrations N_{∞} than the candles with the flavor "Winter Märchen" (WM). On the y-axis, the particle number concentration is depicted, on the x-axis, the dimensionless total time t_{total} . Straight lines depict the concentration corrected experimental data and dotted lines depict the experimental data fitted with equation (0-61).

Table 22	Bas	e para	meters	for the experiment #126-#129 described	in the tex
	Name	Value	Unit	Description	
	SPFA	26	~	Speed factor in the Labview software	
	V_{p7}	0.1	l/min	Settler flow	
	V_{p4}	0.138	l/min	Measured sample flow	
	$\tau_9 + \tau_6$	61	S	Residence time settler \rightarrow CPC, path 4	
	dilution	10	~	Dilution with respect to the raw data	
	t _{total}	4211	S	Time for emptying settler	

I.1.22.2 Polydisperse Coagulation II (Method 3)

For determination of the coagulation coefficient K it is straight forward to apply the complex operation "Polydisperse Coagulation II" of section I.1.13.1.2 for the measurement together with the method derived in section 0 for evaluation.

Several experiments were performed in this sequence. The particle sources were again candles with different flavors and numbers (see Table 21). In Figure 42 the Smoluchowski plot of one typical experiment is depicted. The variable NSMA depicts the number of experimental runs, beginning with 0. After filling the probe into the settler, the valve VM2 is switched manually to the clean air filter RLF1. For the dilution process the number of rotations of DRV1 (variable ROTDRV1) was set to 2.25⁹¹. Then the probe was measured for 900 [s]. In the next step the settler was moved back into its starting position while diluting the aerosol. This process was repeated several times (compare Figure 21).

In Figure 42 the reciprocal particle concentration on the y-axis is drawn over the time along the x-axis. The different experimental runs NSMA are shown as parameters, where NSMA=0 is the first experiment. From the linear fit of the measurement values, the section with the y-axis gives the apparent coagulation coefficient.

Figure 42 Smoluchowski plot of experiment #119; The particle source were – 4 candles with the flavor OP

⁹¹ The setting of the manual needle valve DRV1 determines both the filling flow and the dilution flow of the settler. The lower the number of rotations the lower is the dilution.

A negative slope means that the particle concentration is increasing instead of decreasing, which can be explained by the fact that the dilution process fills the settler with particle free air. While measuring, particles on the wall are resuspended or injected from the ambient air leakage, increasing the measured particle concentration.

With increasing dilution the initial measured particle concentration is fluctuating while the regression coefficient is decreasing, this is the reason for cutting off the measurements at increasingly later time's Figure 42.

According to the theory of Rooker and Davies and the solution of (0-42) the apparent coagulation coefficient K_a can then be gained as slope of the yielded straight lines. E.g. the coagulation coefficient for the first measurement (NSMA=0) would then be $K_a=1.29*10^{-8}$ [cm³/(#*s)]. The equivalent value K_{ac}^{92} of the CMD method derived in section I.1.7.5 tabulated for the same experiment #119 in Table 23 is $K_{ac}=0.77*10^{-8}$ [cm³/(#*s)]. The second value is hence 40% lower indicating that the theory of Rooker and Davis is not fully applicable for the CMD.

In Figure 43 a typical measurement of the velocity is shown. The velocity is fairly constant, and most of the measurements values are even within $\pm 0.5\%$ m.v.(measurement value), although the measurement of the flow sensor is $\pm 1\%$ m.v. The constant flow measurement indicates that the concentration fluctuations are due to an inhomogenity of the aerosol rather then that of sample flow.

Figure 43 Volume flow Vp_4 for all measurements of experiment #121; The particle source were 4 candle lights with the flavor WM;

⁹² Apparent coagulation coefficient for the constant concentration reactor.

Figure 44 Number concentration N_{∞} measured with the operation "Polydisperse Coagulation II" and experiment #121. The particle sources were 4 candles with the flavor WM; The residence time is not subtracted from the measurement time.

Figure 45 Number concentration N_{∞} measured with the operation "Polydisperse Coagulation II" and experiment #119. The particle sources were 4 candles with the flavor OP; the residence time is already subtracted from the measurement time.

In Figure 44 and Figure 45 experiments #121 and #119 are depicted for the measured particle concentration and the operation "Polydisperse Coagulation II". As the initial concentration N_0 was quite low, the consequent dilution leads to a drastic concentration decrease in such a manner that the concentration decrease after the third measurement was quite low. In addition the fluctuation in the beginning of the measurements indicates that the dilution process causes turbulences that dominate the beginning of the measurement. Therefore it is difficult to determine the initial slope of the concentration with this method, and hence the coagulation coefficient exactly.

The problem of the dilution would be solved best by a mass flow controller, instead of DRV1, with changing volume flow for each consequent concentration measurement. Turbulence of the flow concentration could be avoided by waiting a critical time, until the filled air volume has calmed down that has to be gained experimentally. Generally higher particle concentrations should give more accurate results, as the observed particle concentration reduction is higher.

The resulting apparent coagulation coefficients K_{ac} should give straight lines in Figure 46 with positive slope depicted for a series of measurements. Each set of points represents one measurement in operation "Polydisperse coagulation II". The section with the y-axis gives the coagulation coefficient K the slope the particle wall diffusion frequency L_0 .

Figure 46 Summary of the measurements for the operation "Polydisperse Coagulation II"
The corresponding values to Figure 46 are shown in Table 23. The sign # denotes the number of the experiment, flavor and number of candles denotes the kind of particle source. The first r^2 denotes the *linear regression coefficient* of the concentration values according to the single step measurements NSMA=i (i=1...NSM) and the resulting K_{ac}. Only concentrations starting at γ =0 and N_∞=N₀ after the residence time have been regarded. The second *linear regression coefficient* r^2 denotes the correlation between K_{ac} and 1/N₀ according to Figure 46, where the blue values have not been used for regression. L₀ is the wall diffusion frequency and K_m is the final mean coagulation coefficient as a function of particle source.

Table 23Results of the coagulation coefficients calculation with the graphical method for
polydisperse aerosols produced by 4 and 6 candle lights with the flavor OP and WM for the CMD
operation "Polydisperse Coagulation II. Details are described in the text.

Experiment	Flavor	Candles	Initial particle concentration				Pearson's regression coefficient	Wall diffusion frequency	Coagulation coefficient	Pearson's regression coefficient	Mean coagulation coefficient
#	Туре	#	N_0	Δt	K_{ac}	1/N ₀	r ²	L_0	K	r ²	K_m
//110	OD	4	#/cm	1.675+02	$cm^{-}/(\#^{*}s)$	1.265.05	0.02	1/S	$cm^{7}(\pi^{*}s)$	~	$cm^{-}/(\#^{*}s)$
#119	OP	4	7.91E+04	1.05E+03	7.00E-09	1.20E-05	0.92	1.01E-04	5.93E-09	0.98	0.91E-09
			2.70E+04	3.19E+03	1.14E-08	5.03E-05	0.80				
			1.43E+04 9.24E+03	5.70E+03	1.8/E-08 2.26E-08	0.91E-03 1 08E-04	0.84				
			6.61E+03	6 44E+03	2.20E 00	1.00E 04	0.72				
#124	OP	6	2.42E+04	2.48E+03	1.67E-08	4.14E-05	0.93	3.02E-04	7.89E-09	0.92	
			1.13E+04	4.75E+03	1.87E-08	8.86E-05	0.66				
			7.18E+03	2.60E+03	5.36E-08	1.39E-04	0.89				
			4.06E+03	2.42E+03	1.02E-07	2.46E-04	0.97				
			2.21E+03	3.41E+03	1.33E-07	4.53E-04	0.77				
#123	WM	4	5.16E+03	9.27E+03	2.09E-08	1.94E-04	0.80	-8.73E-06	2.11E-08	0.03	
			3.85E+03	1.35E+04	1.93E-08	2.60E-04	0.51				
			3.13E+03	1.84E+04	1.74E-08	3.19E-04	0.21				
			2.64E+03	3.38E+04	1.12E-08	3.79E-04	0.09				
			2.34E+03	1.86E+04	2.30E-08	4.27E-04	0.28				
#121	WM	4	3.24E+04	1.67E+03	1.85E-08	3.09E-05	0.83	9.52E-05	1.41E-08	0.76	1.41E-08
			1.31E+04	4.13E+03	1.85E-08	7.63E-05	0.65				
			8.03E+03	4.55E+03	2.74E-08	1.25E-04	0.58				
			5.35E+03	1.16E+04	1.61E-08	1.87E-04	0.10				
			4.32E+03	1.94E+04	1.19E-08	2.32E-04	0.07				
#125	WM	6	8.07E+03	2.04E+03	6.09E-08	1.24E-04	0.67	-3.88E-05	5.55E-08	0.26	
			4.49E+03	5.57E+03	4.00E-08	2.23E-04	0.78				
			3.12E+03	9.32E+03	3.44E-08	3.21E-04	0.55				
			2.42E+03	1.21E+04	3.41E-08	4.13E-04	0.55				
			2.03E+03	1.05E+04	4.71E-08	4.93E-04	0.64				

For the particle source OP, a coagulation coefficient of $K_m=6.91*10^{-9} [cm^3/(\#*s)]$ results. For the particle source WM, the total particle concentration was generally lower, leading to a low correlation coefficient r^2 . The resulting values for L_0 showed partly negative valued indicating erroneous results. One reason might have been resuspension of particles. The value of the best measurement gave the result of $K_m=1.41*10^{-8} [cm^3/(\#*s)]$.

Conclusions

Theory of coagulation and diffusion

A measurement system for measuring the coagulation coefficient has been built and compared with data from the literature and evaluated for different methods from an expanded particle theory of particle loss due to deposition and coagulation. By means of this theory, the characteristic quantities of the initial concentration N_{∞} , the diffusion frequency L and the particle coagulation coefficient K can be determined. In this work, for the first time, 4 methods are introduced beginning with the theory from Rooker and Davies (Rooker and Davies 1979) (1) for different time scales and different reactor types according to Table 24 and chapter 0. The second method (2) generalizes this theory and is applicable for detailed calculation and long time observation of the aerosol concentration. Method (3) is the analogous method for short times, taking into account that the reactor is of constant concentration type. The last method (4) is the generalized form applicable for the constant concentration reactor and for long time observation.

Table 24Methods for determination of the coagulation coefficient K with the theory of loss by
coagulation and deposition; CV denotes the constant volume and CC the constant concentration
reactor:

reactor,						
Method	Restrictions	Characteristic equation	Reactor type			
(1)	t → 0	(0-46)	CV			
(2)	t: 0∞ (general method)	(0-47)	CV			
(3)	γ → 0	(0-64);(0-67)	CC			
(4)	γ : 0 ∞ (general method)	(0-61)	CC			

A better applicability of method (2) & (4) then (1) & (3) is given for higher particle concentrations, due to higher accuracy and physical limitations (reactor size, settler velocity). In general higher particle concentrations or a larger settler volume enhance the evaluation of the coagulation coefficient K compared to the diffusion frequency L.

For the special case when the measurement time, t_{MEAS} , is large compared to the coagulation time, t_{COAGUL} , method (4) reduces to the method (2). In general, for t_{MEAS} >> t_{COAGUL} and for large volumes, the constant concentration reactor can be approximated with the constant volume reactor.

Coagulation Measurement Device (CMD)

A coagulation coefficient measurement device (CMD) has been built on the basis of various data acquisition hardware and integrated with the LABVIEW Software as described in chapter 0. In Table 25, the advantages and the disadvantages of the built CMD are summarized.

In general, the advantage of a CMD for coagulation measurement is that it can be applied for different kinds of aerosols and different types of reactions as coagulation, diffusion deposition & nucleation when the thermodynamic state, p,V and T can be kept constant with regard to the particle concentration without aerosol reaction as e.g. coagulation⁹³. Furthermore it is applicable to a variety of measurement sites and measurements can be performed quasi in situ avoiding transport and ageing effects of the sampled aerosol. An advantage of the constant concentration reactor over the tube reactor is the simplicity and flexibility of construction which allows for a smaller dimension with comparable functionality.

A general disadvantage of the CMD is the pollution due to deposition. For the built CMD, the settler has to be cleaned manually, which is time consuming. When cleaned the leakage flow has to be determined again empirically. This problem increases as the accuracy of coagulation measurement is higher for higher particle concentrations and hence higher pollution. Further general disadvantages are, that complex tasks difficult to oversee have to be done⁹⁴, even though a high grade of automation has been done (e.g. complex operations in section I.1.13.1) also there is a longer time requirement for the constant concentration reactor (CC) compared to the tube reactor (Heiden and Sturm 2005).

A main advantage of the built CMD application is that different reactor types are applicable (CC, variable constant volume reactor (CV)). Another advantage is that the measuring is done in the dispersed aerosol until the aerosols pass the CPC (condensation particle counter). This makes possible alternate measurement of the same aerosol with other measuring devices. With different settler materials, different wall deposition and the influence of radiation (e.g. transparent material) etc. can be measured. The volume of the settler can be varied by different settler dimensions (e.g. outer and inner diameter). A standard bellow also reduces costs, due to mass production. The applied bellow avoids particle deposition due to

⁹³ This is an advantage over the widely applied constant volume batch reactor in the case of a small volume compared to the sampled volume.

⁹⁴ E.g. setting of the manual needle valve DRV1; setting of the parameters of the software;

electrostatic charge by means of antistatic equipment, but it is not resistant to UV radiation. Further advantages are that there is an expandable software platform and expandable data acquisition hardware and that the reactor is, in total, a flexible, basic research reactor for the transition regime. Theory evaluation becomes interesting for expanding the CMD to temperature regulation and mixing for investigating turbulence–diffusion compared to convection-diffusion effects of coagulation.

Disadvantages of the built CMD are that is has a quite small volume, resulting in a high surface to volume ratio, hence, higher deposition, and also that the volume of the settler is difficult to measure exactly. The leakage flow is difficult to determine and can change due to maintenance operations like cleaning or replacing the settler bellow. It is difficult to trim because of the low net aerosol flow. As the settler flow is determined by the exact stepper motor control, a constant settler flow and a constant CPC flow allows for a simplified net dilution calculation of the particle aerosol concentration, thus compensating for the leakage flow. Further disadvantages of minor importance are that the applied flexible bending leads to possible variations in flow resistance, the valves are heated during operation, leakage of the bellow is difficult to perceive directly and that there is higher diffusion in the tubes for the CMD-system compared to the SMPS-system due to higher residence times and longer tube lengths.

Туре	Advantage	Disadvantage		
	* Different kinds of aerosol	* Pollution		
	* Different types of reaction:	* Laborious, complex tasks		
	Coagulation, diffusion, deposition & nucleation	_		
ral	* Constant thermodynamic state compared to	* Low concentrations, low accuracy		
aua	constant volume reactor			
Čé	* Any location, in situ	* Longer time requirement then		
		tube reactor		
	* Smaller dimension, simpler and more flexible			
	then tube reactor			
	* Several reactor types applicable	* Small volume		
	* Expandable for measurement devices	* Higher diffusion due to high		
		surface to volume ratio		
и	* Other settler materials available	* Volume measurement		
atic	* Other settler sizes	* Leakage flow, valves, settler		
lica	* Standard bellow (antistatic)	* Flexible bending		
App	* One control platform	* Higher diffusion to longer paths &		
``	* Elevitle and reasonab reactor	* Not register to UV rediction		
	* Flexible and research reactor	* Not resistant to UV radiation		
	* I emperature regulation	* Leakage detection		
	* Mixing	* Cleaning		
	* Settler flow exact due to stepper motor	* Valve heating		

Table 25Advantages and disadvantages of the CMD with constant concentration reactor for
the general and the special case relating to the build CMD

Development of the CMD for the coagulation coefficient measurement

Coagulation coefficient

In Figure 47 the results for the coagulation coefficients measured and calculated in chapter 0 are summarized. The mean coagulation coefficient K for method 2 & 4 is $3.69*10^{-9}$ [cm³/(#*s)], the mean coagulation coefficient K for method 1 & 3 is $6.89*10^{-9}$ [cm³/(#*s)]. The mean value for L is $1.27*10^{-4}$ [1/s].

Method 2^{95} & 4 yield approximately 5 times higher coagulation coefficients then method 1 & 3, calculated for the mean coagulation coefficients. The cause for the difference might be that the assumed time of linear approximation especially for higher concentrations is taken too short, that there is a difference due to different aerosol sources, that each aerosol mixture behaves stochastically different or some other reason.

Figure 47 Coagulation coefficients K and wall diffusion frequencies L for the four different methods 1-4 of Table 24 as parameter; The mean coagulation coefficient for similar methods 1&3 and 2&4 are shown as straight lines. For the measurement point for method 1 L is unknown, hence, the mean value of the experiments of method 3 was taken. There were taken the following aerosol sources denoted at each point: soot, candles flavor WM & OP, incense and chalk for the experiments of Rooker and Davies (Rooker and Davies 1979).

Compared with the experiments of Rooker and Davies (Rooker and Davies 1979) there is a good accordance with the results gained with methods 1&3 for the mean values of K and L. The experiments of Rooker and Davies show, as the CMD experiments, a wide variation in K values ranging from $5.97*10^{-8}$ [cm³/(#*s)] to $4.97*10^{-9}$ [cm³/(#*s)] yielding a factor of

approximately 6 from minimum to maximum, which is quite in the range of the measurements of this work performed with all different methods. The good accordance of the mean value of the wall diffusion frequency L for method 1 & 3 can be explained by comparable reactor dimensions of the settler and the experiments of Rooker and Davies⁹⁶, where the surface to volume ratios were 4 to 5 times lower then for the CMD experiments, were higher values of L are indicating a higher particle loss due to deposition. On the other hand, the Knudsen numbers were 0.32 for the CMD experiments and between 6 and 13 for Rooker and Davies. This indicates that there is a discrepancy between the theoretical⁹⁷ and the experimental coagulation coefficient for the Knudsen number in the transition regime.

Outlook

There are still a number of open questions for the CMD. Future research of the coagulation coefficient measurement with the CMD will have to examine following questions:

- What is the extent of dilution due to leakage, and does it have significant influence? Is there a need to expand the theory of loss and coagulation for leakage? How can leakage be avoided and or be detected and corrected systematically and automated?
- What effects have long duration experiments on the accuracy with regard to pollution and maintenance?
- What are the coagulation coefficients K of aerosols of different sources?
- Is there a significant dependency of the deposition frequency as a function of operation mode and sample flow rates?
- What are the causes for the measured fluctuating coagulation coefficient K and can a clear distinction between aerosol sources and K be made?
- What influence have different wall materials and/or sizes of the settler and can there be done a model investigation of wall deposition in closed rooms as e.g. in tunnels?
- What is the dependency of particle structure and can integral structure properties like the fractal dimension D_f be measured in accordance with detailed structure measurements e.g. with scanning electron microscopy (SEM)?
- What is the experimental relation between monodisperse and polydisperse coagulation?

⁹⁵ Numbers of method are according to Table 24.

⁹⁶ Balloon sizes of diameter 19 and 24 cm.

⁹⁷ Equation (0-27).

Development of the CMD for the coagulation coefficient measurement

Literature

- 1. Bakk, E. S. (2005). "Prüfroutinen für den einwandfreien Normalbetrieb der Koagulationsmessung mit dem Aerosol Koagulationsmessgerät." Diploma Thesis: *Prüfroutinen für den einwandfreien Normalbetrieb der Koagulationsmessung mit dem Aerosol Koagulationsmessgerät*, Institut für Thermodynamik und Verbrennungskraftmaschinen, Technische Universität Graz.
- 2. Brugger, B. (2005). "Fail-Safe Analysis of the Coagulation Measurement Device (CMD)." Diploma Thesis: *Fail-Safe Analysis of the Coagulation Measurement Device (CMD)*, Institut für Thermodynamik und Verbrennungskraftmaschinen, Technische Universität Graz.
- 3. Dymond, J. and Smith, E. B. (1980). The Virial Coefficients of Pure Gases and Mixtures, Oxford University Press, New York.
- 4. Friedlander, S. K. (2000). Smoke, Dust, and Haze, Oxford University Press, New York.
- 5. Fuchs, N. A. (1989). The Mechanics of Aerosols, Dover Publications, Inc., New York.
- 6. Heiden, B. and Sturm, P. J. (2005). "Development of a Coagulation Coefficient Measurement Device (CMD)." Conference: "Sustainability for Humanity & Environment in the extended connection field science - economy - policy", Timisoara, Romania, Vol. 1, 75-78.
- 7. Hinds, W. C. (1999). Aerosol Technology: properties, behavior, and measurement of airborne particles, John Wiley & Sons, Inc., New York.
- 8. Husar, R. B. (1971). "Coagulation of Knudsen Aerosols." Ph.D. thesis, Department of Mechanical Engineering, University of Minnesota.
- 9. Ivanišin, M., Bischof, O. F., Zerrath, A., Krinke, T., and Heiden, B. (2005). "Abgaspartikelmessmethoden und Auswirkung der Abgasnachbehandlung auf die Partikelanzahlemissionen." CTI Fachkonferenz Diesel-Partikel-Filter, Stuttgart.

- 10. Jamal, R. and Hagestedt, A. (2001). Labview Das Grundlagenbuch, Addison-Wesley, München.
- 11. Jullien, R. and Botet, R. (1987). Aggregation and Fractal Aggregates, World Scientific Publishing Co, Singapore.
- 12. Kostoglou, M. and Konstandopoulos, A. G. (2001). "Evolution of aggregate size and fractal dimension during Brownian coagulation." Aerosol Science, 32, 1399-1420.
- 13. Mandelbrot, B. B. (1987). Die fraktale Geometrie der Natur, Birkhäuser Verlag, Basel.
- 14. Moser, A. (1988). Bioprocess Technology Kinetics and Reactors, Springer, New York.
- 15. National Instruments (2003). Labview Bascis I Kurssoftware Version 7.0, National Instruments, Salzburg-Bergheim, Austria.
- 16. National Instruments (2004). Labview Bascis II Development Course Software Manual Version 7.0, National Instruments, Austin, Texas.
- 17. Oertel, H. (2001). Prandtl-Führer durch die Strömungslehre, Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Wiesbaden.
- 18. Pflügl, M. and Rentz, A. (2000). Stoffaustausch (Skriptum), Institut für Grundlagen der Verfahrenstechnik und Anlagentechnik, Technische Universität Graz, Graz.
- 19. Rooker, S. J. and Davies, C. N. (1979). "Measurement of the coagulation rate of a high Knudsen number aerosol with allowance for wall losses." Journal of Aerosol Science, 10, 139-150.
- 20. Rudyak, V. Y. and Krasnolutskii, S. L. (2001). "Kinetic description of nanoparticle diffusion in rarefied gas." Doklady Physics, 46(12), 897-899.
- 21. Rudyak, V. Y. and Krasnolutskii, S. L. (2002). "Diffusion of nanoparticles in a rarefied gas." Technical Physics, 47(7), 807-813.
- 22. Schnell, M., Cheung, C. S., and Leung, C. W. (2004). "Coagulation of diesel particles in an enclosed chamber." Journal of Aerosol Science, 35(10), 1289-1293.

- 23. Smoluchowski, M. (1917). "Versuch einer mathematischen Theorie der Koagulationskinetik kolloidaler Lösungen." Zeitschrift für physikalische Chemie, 92, 129-168.
- 24. Soldov, A. and Ochkov, V. (2005). Differential Models An introduction with Mathcad, Springer Verlag, Berlin.
- 25. Zahoransky, R., Feld, H.-J., Dittmann, R., Samenfink, W., and Laile, E. (2000). "Das optische Dispersionsquotienten-Verfahren für die on-line/in-situ Partikelanalyse." Beitrag in der Festschrift: Prof. Dr. Ing. Dr. h.c. Sigmar Wittig Rektor der Universität Karlsruhe zum 60. Geburtstag, Wizard Zahoransky KG, erschienen am Institut für Thermische Strömungsmaschinen Universität Karlsruhe (T.H.).

FIGURES

Figure 1	Corrected settling factor c_{sf} for fractal particles as a function of the	
	settling velocity c_{s} for spherical particles. Decreasing fractal dimension $D_{\rm f}$	
	and decreasing particle size d_p leads to a decreasing settling velocity. The	
	value $D_f=1.78$ is the value for Brownian coagulation in the three	
	dimensional space often applied for soot particles (Jullien and Botet 1987)	
	p.88	27
Figure 2	Solution of the Smoluchowski equation for different initial concentration	
	and a constant coagulation coefficient K=54*10 $[cm^3/s]$	30
Figure 3	Solution of the Smoluchowski equation for a different concentration	
	decrease α and the corresponding actual as the initial particle	
	concentration N and N_0 ; Different coagulation times t are used as a	
	parameter. The coagulation coefficient is constant $K = 54*10^{-10} [cm^3/s]$	31
Figure 4	Principal surface, volume and particle concentration relation of the settler	33
Figure 5	Solution of the logistic equation for the constant concentration reactor for	
	different initial concentrations N_0 and a constant emptying time t_{total} =75	
	[min] and the constants $L_0=1.89*10^{-4}$ [1/s] and $=56.7*10^{-10}$ [cm ³ /s]	
	according to equation (0-61)	39
Figure 6	Graphical method to determine the apparent coagulation coefficient $K_{ac} \label{eq:constraint}$	
	according to equation (0-67). The method is described in the text	41
Figure 7	Basic Setup of the CMD	46
Figure 8	Flow chart of the standard SMPS system	47
Figure 9	Flow chart of the CMD system	48
Figure 10	Settler in the end switch positions	51
Figure 11	Flow rates Vp ₄ of the flow sensor ASF 1430 for different times of	
	emptying and filling the settler; The parameter SPFA denotes the speed	
	factor of the stepper motor in the LABVIEW software. It is proportional to	
	the stepper motor steps per time unit.	52
Figure 12	2 Settler flow rates as a function of the total time for pressing out the	
	complete settler volume; Vp_4 is according to the measurement in Figure	

11; The measured flow together with the calculated leakage flow Vp_7 (see
text) is shown with the blue dotted line and shows a good accordance with
the volume flow Q calculated from the settler geometry according to
equation (0-4)
Figure 13 Calculation of the total effective settler volume according to the
measurement in Figure 11 and equation (0-5)
Figure 14 Scheme of the settler flow Vp_7 the leakage flow Vp_L and the measured
flow Vp ₄ for the mass balance
Figure 15 Pressure difference measurements for the sensor ASP 1400 for different
times of emptying and filling the settler
Figure 16 Volume flow Vp ₄ at $T_4=20^{\circ}C$ as a function of different settler temperatures
T_7 and the total measurement time t_{total} . The ambient temperature T_2 is also
20°C
Figure 17 δ in % at T ₄ =20°C as a function of different settler temperatures T ₇ and the
total measurement time t_{total} . The ambient temperature T_2 is also 20°C
Figure 18 Labview implementation of the paths of the CMD
Figure 19 Labview implementation of the operations of the CMD
Figure 20 The complex operations "Monodisperse Coagulation" and "Polydisperse
Coagulation"
Figure 21 Complex operations Polydisperse Coagulation I and II
Figure 22 Decision chart for the simple operations of the CMD denoted with bold
letters
Figure 23 Main application window of the CMD-Program: "CMDC_Menu.vi"
Figure 24 Application window of the CMD-Program: "CMDC_Initialization.vi"
Figure 25 Application window of the CMD-Program:"CMDC_Measurement.vi"; this
is the central window controlling all measurements
Figure 26 Minimum filling time for the settler τ_{8} . The total settler volume was
assumed with $V_{70}=7.05$ [l], the volume for the settler and the gas path
before was $V_8=7.11[1]$. On the right side the number of rotations, counted
from the closed valve, of the needle valve DRV1 is related to the filling
flow and hence to the minimum filling time τ_8 (see text for more details)
Figure 27 Total measurement time possible when emptying the settler as a function
of the sample flow Vp4 and the number of the measurements (NSM) on the

right y-axis; The total measurement time as a function of Vp ₄ can be read	
on the left y-axis (calculation see equation (0-20))	83
Figure 28 Residence time τ_3 for the SMPS DMA as a function of the sample flow	
Vp_1 and the sheath flow Vp_2 . As a recommendation from TSI the ratio of	
sheath flow to sample flow should be at least ten. The residence time for	
this ratio is shown with the thick blue line	85
Figure 29 Residence time for the CPC3010 and the standard SMPS tubing as a	
function of the sample flow V_{p1} (description see text)	86
Figure 30 Residence times for the standard SMPS system $\tau_0 + \tau_6$ and the CMD system	
$\tau_4 + \tau_6$ or $\tau_9 + \tau_6$ as a function of the sample flow Vp ₁ or Vp ₄	87
Figure 31 Monodisperse CMD measurement of the CAST setting d_{pg} =160 [nm]; τ_I is	
the residence time before the aerosol flow enters the measurement site of	
the SMPS Classifier (experiment #65)	93
Figure 32 Monodisperse CMD measurement of the CAST setting d _{pg} =160 [nm]	94
Figure 33 Total particle concentrations N_{∞} of run #65	95
Figure 34 Control measurement of the CAST measurement with the standard SMPS	
system for experiment #65	95
Figure 35 CMD measurement one day after the soot measurements of experiment	
#65 with the same aerosol enclosed (experiment #67); the numbers #x refer	
to the usual different first measurement and #8-9 to the single	
measurement run of the monodisperse measurements (see Table 16);	
Dilution with ambient air had occurred .	96
Figure 36 Smoluchowski coagulation plot for monodisperse soot measurements with	
the CAST; $K_a = 4.649 \times 10^{-9} [cm^3/(\#s)]$ (experiment #65).	97
Figure 37 Evolution of the sized distribution of different particle sizes over time	
measured with the CMD for incense and nine sequential runs NSMA=19	
in the CMD operation "Polydisperse Coagulation". dN is the particle size	
measured with the CPC plus the correction for the dilution and d_p is the	
mobility particle diameter in nm (This is a different view of Figure 38)	98
Figure 38 Sized distributions measured with the CMD for the incense measurements	
for nine sequential runs NSMA=19 in the CMD operation "Polydisperse	
Coagulation". dN is the particle size measured with the CPC plus the	
correction for the dilution and d_p is the mobility particle diameter in nm	99

Figure 39 Particle concentration decay of the incense measurements. The	
experimental values (crosses) are corrected for the particle concentration	
according to the position of the settler (circles). A three parameter fit of	
equation (0-47) and N_{∞} , K and L is depicted with a dotted line	100
Figure 40 Raw data for experiments #126-#129: Test for operation "Polydisperse	
Coagulation I" for determination of the coagulation constant, for two	
different types of candle lights and two different concentrations; The	
candle light with the flavor "Orangenpunsch" produce higher particle	
concentrations N_{∞} than the candle lights with the flavor "Winter Märchen" 1	102
Figure 41 Fitted results for experiments #126-#129; Test for operation "Polydisperse	
Coagulation I" for determination of the coagulation constant, for two	
different types of candles and two different concentrations; The candles	
with the flavor "Orangenpunsch"(OP) produced higher particle	
concentrations N_{∞} than the candles with the flavor "Winter	
Märchen"(WM). On the y-axis, the particle number concentration is	
depicted, on the x-axis, the dimensionless total time t _{total} . Straight lines	
depict the concentration corrected experimental data and dotted lines	
depict the experimental data fitted with equation (0-61) 1	104
Figure 42 Smoluchowski plot of experiment #119; The particle source were - 4	
candles with the flavor OP 1	105
Figure 43 Volume flow Vp ₄ for all measurements of experiment #121; The particle	
source were 4 candle lights with the flavor WM; 1	106
Figure 44 Number concentration N_∞ measured with the operation "Polydisperse	
Coagulation II" and experiment #121. The particle sources were 4 candles	
with the flavor WM; The residence time is not subtracted from the	
measurement time 1	107
Figure 45 Number concentration N_{∞} measured with the operation "Polydisperse	
Coagulation II" and experiment #119. The particle sources were 4 candles	
with the flavor OP; the residence time is already subtracted from the	
measurement time 1	107
Figure 46 Summary of the measurements for the operation "Polydisperse	
Coagulation II"1	108

Figure 47 Coagulation coefficients K and wall diffusion frequencies L for the four	
different methods 1-4 of Table 24 as parameter; The mean coagulation	
coefficient for similar methods 1&3 and 2&4 are shown as straight lines.	
For the measurement point for method 1 L is unknown, hence, the mean	
value of the experiments of method 3 was taken. There were taken the	
following aerosol sources denoted at each point: soot, candles flavor WM	
& OP, incense and chalk for the experiments of Rooker and Davies	
(Rooker and Davies 1979).	114
Figure 48 CMD flow chart with possible valve positions	135
Figure 49 Total measurement time possible when emptying the settler as a function	
of the sample flow Vp_4 and the number of the measurements (NSM) on the	
right y-axis; The total measurement time as a function of Vp ₄ can be read	
on the left y-axis (this Figure is similar to Figure 27 but also lower sample	
flow rates can be seen)	136
Figure 50 Detailed front panel of the main measurement program: CMDC_Menu.vi	141
Figure 51 Program Hierarchy CMDC_Menu.vi branch CMDC_Measurement.vi	141
Figure 52 Program Hierarchy CMDC_Menu.vi branch CMDC_Initialization.vi	142
Figure 53 Program hierarchy for SMPS_SCAN_CPCCXX.vi and SM_RUNC.vi;	
Both programs are implicitly sub vi's of CMDC_Measurement.vi and	
therefore not shown in Figure 51.	142
Figure 54 Standard application "SM4xDRV.EXE" from Hasotec for the stepper	
motor control. Has to be started and closed before running the LABVIEW	
program to load the driver for the Hasotec driver card into PC-memory	145

TABLES

Table 1	Methods of the determination of the coagulation coefficient K; CV	
	denotes the constant volume and CC the constant concentration reactor;	34
Table 2	Main settler parameters	50
Table 3	t_{total} =time for one run of the effective flow rate experiments; α =leakage	
	ratio; Vp ₄ =sample flow rate; Vp ₇ =settler flow rate; dp ₃ =differential	
	pressure settler; T ₇ =temperature settler, mean T _{7m} =298.3 [K]; mean	
	p_{2m} =.9819 [bar]; ρ_4 = ρ_7 =1.147 [kg/m ³] orange values are extrapolated;	56
Table 4	Parameters of equation (0-14) to determine the settler flow Vp7 and the	
	sample flow Vp ₄ from pressure difference $dp_3=\Delta p$ of Figure 15	58
Table 5	Vp ₄ at T ₄ =20°C as a function of the settler temperature T ₇ and the total	
	measurement time t _{total} and Vp ₇ =const according to Table 3	62
Table 6	δ in % at T ₄ =20°C as a function of T ₇ and the total measurement time	
	t _{total} ;Vp ₇ is const according to Table 3	62
Table 7	CMD paths: green=filling or cleaning; orange=settler measuring;	
	blue=like standard SMPS measuring	63
Table 8	Operations of the CMD	65
Table 9	Classification of important ideal physical states relevant for the CMD	78
Table 10	Residence times for the standard SMPS system	79
Table 11	Residence times for the CMD system and the starting and endpoints for the	
	related paths. These are part of different main paths listed in Table 7	80
Table 12	Parameters of the SMPS DMA relevant for the residence time calculation	
	(see text)	83
Table 13	Data according to Figure 29	87
Table 14	Monomodal size distribution measured with the standard SMPS system	
	and setting the CAST diameter to d _p =85 [nm]	92
Table 15	Residence times for the CAST experiments #65 & #67; τ_I is the time d_p is	
	shifted to concentration because of residence time between DMA and	
	CPC; $\tau_{I I}$ is the time the raw data are shifted to the beginning of	

	measurement mode; V_{p2} is the sheath, V_{p2} is the sample flow and NSMA is	
	the number of each single size distribution measurement	93
Table 16	Particle concentrations of run #65& #67	94
Table 17	Results for the parameters of the initial concentration N ₀ , the apparent	
	coagulation coefficient K _a which is approximately the same as the	
	coagulation coefficient K and Pearson's regression coefficient r^2 of the	
	monodisperse soot measurement (experiment #65); L was not determined	
	because only one data set for K _a existed	96
Table 18	Parameters important for CMD operation "Polydisperse Coagulation" and	
	the incense measurements in this mode.	97
Table 19	Parameters for the incense experiments and the 9 measurements	
	NSMA=19; γ relates to the position of the settler (0=start position), t to	
	the total time of the measurement relating to the median diameter of the	
	relevant data sets for NSMA_i (i=19). Parameters N_{∞} , d_{pg} and σ_{g} fitted for	
	the logarithmic normal distribution. The values for the mean total particle	
	concentration N_{∞} over time are also depicted in Figure 39	100
Table 20	Results for the parameters N_0 , K, L and Pearson's regression coefficient r^2 ,	
	of the incense measurement (experiment #107)	101
Table 21	Results for the experiments #126-#129; On the left side, the results of the	
	AIMS measurement for d_{pg} , σ_g and N_0 are given. They were repeated	
	several times. On the right side, the results of the coagulation experiments	
	for the coagulation coefficients K and the parameters $L_{0,}$, N_0 and the	
	regression coefficients r^2 are given. In the last row the ambient air	
	measurements are given, which are a diluted mixture of both particle	
	sources	103
Table 22	Base parameters for the experiment #126-#129 described in the text	104
Table 23	Results of the coagulation coefficients calculation with the graphical	
	method for polydisperse aerosols produced by 4 and 6 candle lights with	
	the flavor OP and WM for the CMD operation "Polydisperse Coagulation	
	II. Details are described in the text	109
Table 24	Methods for determination of the coagulation coefficient K with the theory	
	of loss by coagulation and deposition; CV denotes the constant volume and	
	CC the constant concentration reactor;	111

Table 25	Advantages and disadvantages of the CMD with constant concentration	
	reactor for the general and the special case relating to the build CMD	113
Table 26	Length and volume of the connecting tubes in the CMD	133
Table 27	Detailed residence time paths	134
Table 28	Hierarchy of the Main vi's and Sub vi's together with the icons of the	
	Labview 7.1 software for the CMD according to Figure 51-Figure 53	143
Table 29	All software variables in the Labview 7.1 implementation for the CMD of	
	the vi's shown in the hierarchy in Figure 51-Figure 53	146
Table 30	Device and corresponding programs, icons in Labview the variable names	
	and their unit of all vi's used for the CMD	152

INDEX

AIMS 15, 18, 79, 80, 86, 95 apparent coagulation coefficient 16, 34, 35, 36, 40, 96 apparent particle concentration 59 bubble flow meter 16, 49, 56, 80 CAST 91, 92, 94, 95 CMD system 47, 80 coagulation coefficient 21, 25, 29, 30, 31, 32, 33, 34, 36, 40, 43, 67, 71 coagulation kernel 21, 26, 29 collision diameter 29 collision frequency function 26 complex operation 63, 65, 66, 67, 68, 73 concentration decrease 31 conctraction number 57 constant concentration reactor 36, 39, 45, 49, 77, 78, 112 Cunningham correction factor 28, 29 differential pressure correction factor 57 fed batch reactor 79 film theory 32 flow sensor 49, 51, 52, 54, 60, 72, 76, 78 flowrate correction factor 60 fractal aggregates 23 fractal dimension 23, 24, 26 general dynamics equation 25, 32 growth 21, 25, 26, 33, 42, 78 Knudsen number 28 laws of growth 21

leakage flow 53, 54 leakage ratio 19, 54 lognormal size distribution 22, 24, 25, 96, 137 mean free path 28, 29, 41 operation concept 64, 70 particle transfer coefficient 33, 37 particle wall diffusion frequency 16, 33, 37 path concept 63 primary particle 23, 41, 43 residence time 21, 45, 64, 68, 78, 79, 80, 85 sample flow 49, 53, 54, 55, 56, 57, 77, 82, 85,87 sample to sheath flow volume ratio 83 settler 13, 50 settler flow 52 settler system 45, 49 settling velocity 15, 26 simple operation 67 standard SMPS system 18, 45, 46, 47, 64, 68, 79, 95 standard state 59 Stokes law 26 surface to volume ratio 28, 50 total particle concentration 24, 25 total time 52, 53, 54, 56, 76, 82 total time ratio 19, 36

two film theory 32 valve system 49

volume to surface ratio 13, 50

Appendix A

Detailed specifications

Tubes

Table	e 26 Length d	and volume of the conne	ecting	tubes	in the	CMD	
			d_i	d_a	L	V	
Туре	Source	Destination	[mm]	[mm]	[cm]	[1]	Name
CMD	SMPS mono out	V3R	6	9	79	0.0223	
CMD	V4A	V3A	6	9	15	0.0042	
CMD	V6A	Pump intake	6	9	36	0.0102	
CMD	V2R	SMPS in	9	11	57	0.0363	
CMD	V2P	V3P	6	9	24.5	0.0069	
CMD	V1P	V5R	6	9	54	0.0153	
CMD	V6R	CPC out	6	9	76	0.0215	
CMD	V4P	V5P	6	9	25	0.0071	
CMD	V4R	VM1	6	9	22	0.0062	
CMD	V7A	Settler bottom	6	9	20	0.0057	
CMD	V5A	V7P	6	9	100	0.0283	
CMD	V1R	VM2	6	9	47	0.0133	
CMD	VM2	Ambient air/ probe in	6	9	0	0.0000	
CMD	V1A	ASF	6	9	16	0.0045	
CMD	ASF	V2A	6	9	12	0.0034	
CMD	ASF	ASF	6	\sim	8	0.0023	
CMD	VM1	RSV	6	9	77	0.0218	
CMD	RSV	RSV	6	\sim	7	0.0020	
CMD	RSV	CPC tube	6	9	0	0.0000	
CMD	CPC tube	CPC in	6	9	0	0.0000	
CMD	V8P	Settler top	6	9	26	0.0074	
CMD	V8A	DRV1	6	9	56	0.0158	
CMD	DRV1	V6P	6	9	132	0.0373	
CMD/SMPS	SMPS in	SMPS poly out	6	\sim	47	0.0133	
CMD/SMPS	SMPS poly out	DMA in	6	\sim	36	0.0102	
CMD/SMPS	DMA out	SMPS mono out	6	\sim	3	0.0008	
SMPS	SMPS mono out	CPC tube	6	\sim	23.5	0.0066	
CMD	Ambient air	Settler top	\sim	\sim	~	7.1113	V_8
CMD/SMPS	DMA in	DMA out	~	~	44.4	0.4136	V_3
CMD	Settler top	Settler bottom	144	204	46	7.049	V_{70}
CMD/SMPS	SMPS in	DMA in	6	~	83.0	0.0235	V_2
CMD/SMPS	CPC in	CPC	~	~	\sim	0.0247	V_6
CMD	Settler bottom	SMPS in	~	~	267	0.0956	\mathbf{V}_1
CMD	DMA out	CPC in	\sim	\sim	193	0.0554	V_4

			d_i	d_a	L	V	
Туре	Source	Destination	[mm]	[mm]	[cm]	[1]	Name
SMPS	DMA out	CPC in	~	\sim	26.5	0.0075	\mathbf{V}_0
CMD	Settler	CPC in	~	\sim	460	0.1745	V_5
CMD	Settler	CPC in	~	\sim	\sim	0.1005	V_9
CMD	Probe in/ambient air	SMPS in	~	\sim	\sim	0.0597	V_{10}
CMD	DMA out	Settler bottom	~	\sim	\sim	0.0684	V_{11}
CMD	Probe in/ambient air	CPC in	~	~	~	0.0646	V ₁₂

Detailed residence times

	Table 27 Detail	led residence time paths
Residence	Path	Detail
time		
$ au_0$	DMA out→CPC in	DMA out \rightarrow SMPS poly out \rightarrow CPC tube \rightarrow CPC in
τι	Settler bottom \rightarrow SMPS in	Settler bottom \rightarrow V7A \rightarrow V7P \rightarrow V5A \rightarrow V5R \rightarrow V1P \rightarrow V1A \rightarrow ASF \rightarrow V2A \rightarrow V2R \rightarrow SMPS in
$ au_2$	SMPS in \rightarrow DMA in	SMPS in \rightarrow SMPS poly out \rightarrow DMA in
$ au_3$	DMA in \rightarrow DMA out	DMA in \rightarrow DMA out
$ au_4$	DMA out→CPC in	DMA out \rightarrow SMPS mono out \rightarrow V3R \rightarrow V3A \rightarrow V4A \rightarrow V4R \rightarrow VM1 \rightarrow RSV \rightarrow CPC tube \rightarrow CPC in
$\tau_5 = \tau_{1+} \tau_{2+} \tau_4$	Settler bottom \rightarrow DMA in &	Settler bottom \rightarrow V7A \rightarrow V7P \rightarrow V5A \rightarrow V5R \rightarrow V1P \rightarrow V1A \rightarrow ASF \rightarrow V2A \rightarrow V2R \rightarrow SMPS in
	DMA out \rightarrow CPC in	\rightarrow SMPS poly out \rightarrow DMA in
		& DMA out \rightarrow SMPS mono out \rightarrow V3R \rightarrow V3A \rightarrow V4A \rightarrow V4R \rightarrow VM1 \rightarrow RSV \rightarrow CPC tube \rightarrow CPC in
τ_6	$CPC \text{ in } \rightarrow CPC$	$CPC \text{ in } \rightarrow CPC$
τ_7	Settler top \rightarrow Settler bottom	Settler top \rightarrow Settler bottom
$\tau_8 pprox t_{_{FILL}}$	Ambient air/probe in →Settler top	Ambient air/probe in(\rightarrow RLF1) \rightarrow VM2 \rightarrow V1R \rightarrow V1P \rightarrow V5R \rightarrow V5A \rightarrow V7P \rightarrow V7A \rightarrow Settler bottom \rightarrow Settler top
τ9	Settler bottom→CPC in	Settler bottom \rightarrow V7A \rightarrow V7P \rightarrow V5A \rightarrow V5R \rightarrow V1P \rightarrow V1A \rightarrow ASF \rightarrow V2A \rightarrow V2P \rightarrow V3P \rightarrow V3A \rightarrow V4A \rightarrow V4R \rightarrow VM1 \rightarrow RSV \rightarrow CPC tube \rightarrow CPC in
$ au_{10}$	Ambient air/probe in \rightarrow SMPS in	Ambient air/probe in(\rightarrow RLF1) \rightarrow VM2 \rightarrow V1R \rightarrow V1A \rightarrow ASF \rightarrow V2A \rightarrow V2R \rightarrow SMPS in
$ au_{11}$	DMA out \rightarrow settler bottom	DMA out \rightarrow V3R \rightarrow V3A \rightarrow V4A \rightarrow V4P \rightarrow V5P \rightarrow V5A \rightarrow V7P \rightarrow V7A \rightarrow settler bottom
τ_{12}	Ambient air/probe in→CPC in	Ambient air/probe in(\rightarrow RLF1) \rightarrow VM2 \rightarrow V1R \rightarrow V1A \rightarrow ASF \rightarrow V2A \rightarrow V2P \rightarrow V3P \rightarrow V3A \rightarrow V4A \rightarrow V4R \rightarrow VM1 \rightarrow RSV \rightarrow CPC tube \rightarrow CPC in

Figure 48 CMD flow chart with possible valve positions

Settler

Figure 49 Total measurement time possible when emptying the settler as a function of the sample flow Vp_4 and the number of the measurements (NSM) on the right y-axis; The total measurement time as a function of Vp_4 can be read on the left y-axis (this Figure is similar to Figure 27 but also lower sample flow rates can be seen)

Appendix B

Visual Basic (VB) programs determining the lognormal size distribution

```
Sub Distribution_()
'Calculation of the logarithmic normal distribution dN/dlog(dp)
'and the dN distribution
'(C) B.Heiden 7.10.2005
'Const name1 = "VTG" 'name of sheet where distribution is calculated
Pi = WorksheetFunction.Pi()
Dim r1, r2, r3, r As Range
'Workbooks("Partikelverteilungen.xls").Activate
Worksheets("Parameter").Activate
dp1 = Cells(2, 2)
DN1 = Cells(3, 2)
typed = Cells(4, 2)
name1 = Cells(5, 2)
' Add a new sheet or overwrite the old
y = True
For i = 1 To ActiveWorkbook.Sheets.Count
  x = ActiveWorkbook.Sheets(i).Name
  If (name1 = x) Then y = False
Next
If y Then
  Set VTG = Worksheets.Add
  VTG.Name = name1
End If
' READ in the basis distribution
' Number of lines in Table
n = Range(dp1).Count
Worksheets(name1).Activate
Cells(1, 1) = "dp"
Range(Names(dp1)).Copy
Worksheets(name1).Paste (Cells(2, 1))
Cells(1, 2) = "dN/dlog(Dp)"
Cells(1, 7) = "dN(dp)"
Range(Names(DN1)).Copy
If typed = 1 Then Worksheets(name1).Paste (Cells(2, 2))
If typed = 2 Then Worksheets(name1).Paste (Cells(2, 7))
!_____
Nges = 0
dpg = 0
xq = 0
deltadp = 0
For i = 2 To n
  dpm1 = Cells(i - 1, 1)
```

```
dp = Cells(i, 1)
  dp1 = Cells(i + 1, 1)
  'Mean difference
  Select Case i
     Case 2
     deltadp = (dp1 - dp)
     Case n
     deltadp = (dp - dpm1)
     Case Else
     deltadp = (dp1 - dpm1) / 2
  End Select
  xq = xq + (dp *
         WorksheetFunction.Ln(10)) / (deltadp)
Next i
xq = xq / (n - 1)
For i = 2 To n + 1
  dp = Cells(i, 1)
  Select Case typed
     Case 1
       ' Calculate dN from dNdlogDp
       dNdlogDp = Cells(i, 2)
       dN = dNdlogDp / xq
       Cells(i, 7) = dN
     Case 2
       ' Calculate dNdlogdDp from dN
       dN = Cells(i, 7)
       dNdlogDp = dN * xq
       Cells(i, 2) = dNdlogDp
  End Select
Next i
For i = 2 To n
  dp = Cells(i, 1)
  dp1 = Cells(i + 1, 1)
  dNdlogDp = Cells(i, 2)
  dNdlogDp1 = Cells(i + 1, 2)
  'Mean diameter
  dpm = (dp + dp1) / 2
  'Mean logarithmic diameter
  Cells(1, 3) = "dpm_ln"
  dpm_ln = (dp1 - dp) / _
         WorksheetFunction.Ln(dp1 / dp)
  Cells(i, 3) = dpm In
  'Mean dN/dlog(dp)
  dNdlogDp_In = (dNdlogDp1 - dNdlogDp) /
          WorksheetFunction.Ln(dNdlogDp1 / dNdlogDp)
  Indp1dp = WorksheetFunction.Ln(dp1 / dp)
  mdN = dNdlogDp_ln * lndp1dp
  Nges = Nges + mdN
  Cells(1, 4) = "mdN"
  Cells(i, 4) = mdN
  dpgi = mdN * WorksheetFunction.Ln(dpm_ln)
  dpg = dpg + dpgi
Next
'Total particle concentration [#/cm^3]
Nges = Nges / 2.3
'Mean diameter
dpg = Exp(dpg / (Nges * 2.3))
sigma = 0
```

For i = 2 To n mdN = Cells(i, 4)dpm $\ln = \text{Cells}(i, 3)$ sigmai = mdN * (WorksheetFunction.Ln(dpm_ln) - WorksheetFunction.Ln(dpg)) ^ 2 Cells(1, 5) = "sigmai" Cells(i, 5) = sigmai sigma = sigmai + sigma Next 'Standard deviation Insigma = (sigma / (Nges * 2.3 - 1)) ^ 0.5 sigma = Exp(Insigma) 'Calculated logarithmic normal lognormal distribution For i = 2 To n dpm $\ln = \text{Cells}(i, 3)$ dNdlogDp calc = Nges * 2.3 / (2 * Pi) ^ 0.5 / Log(sigma) * Exp(-((Log(dpm ln / dpg)) ^ 2 / 2 / (Insigma ^ 2))) Cells(1, 6) = "dNdlogDp calc"Cells(i, 6) = dNdlogDp calc Next 'Writing and formatting of statistical results MsgBox ("Nges: " & Nges & " dpg: " & dpg & " sigma: " & sigma & " xq: " & xq) Cells(1, 9).NumberFormat = "0.00E+00" Cells(2, 9).NumberFormat = "0.0" Cells(3, 9).NumberFormat = "0.00" Cells(4, 9).NumberFormat = "0.00" Cells(1, 8) = "Nges"Cells(2, 8) = "dpg"Cells(3, 8) = "sigmag" Cells(4, 8) = "xq"Cells(1, 9) = NgesCells(2, 9) = dpgCells(3, 9) = sigmaCells(4, 9) = xq'Make diagramm Worksheets(name1).Activate r1 = "A1:B" & n & ",F1:F" & n r2 = "A2:B" & n 'Set r = Union(r1, r2)With Charts.Add .ChartWizard Source:=Worksheets(name1).Range("A1:B" & n & ",F1:F" & n), gallery:=xIXYScatter, Title:="Lognormalverteilung", _ Format:=2, PlotBy:=xlColumns, CategoryTitle:="Dp (nm)", valuetitle:="dN/dlog(Dp) [#/cm^3]" End With ActiveChart.Location Where:=xlLocationAsObject, Name:=name1 ActiveChart.ChartType = xIXYScatterSmoothNoMarkers ActiveChart.SetSourceData Source:=Sheets(name1).Range("A1:B105,F1:F105"), _ PlotBy:=xlColumns Call Diagrammformat End Sub Sub Diagrammformat () ' logarithmic scalin With ActiveChart.Axes(xlCategory) .MinimumScale = 10 .ScaleType = xlLogarithmic End With 'grid net

With ActiveChart.Axes(xlPrimary) .HasMajorGridlines = True .HasMinorGridlines = True End With ActiveChart.Axes(xlSecondary).HasMajorGridlines = True ActiveChart.Axes(xlCategory).MinorGridlines.Border.ColorIndex = 15 ActiveChart.Axes(xlCategory).MajorGridlines.Border.ColorIndex = 48 ActiveChart.Axes(xlValue).MajorGridlines.Border.ColorIndex = 15 ' diagram aerea ActiveChart.PlotArea.Select Selection.Interior.ColorIndex = xINone ' format of data rows ActiveChart.SeriesCollection(1).Select Selection.Border.LineStyle = xlNone With Selection .MarkerBackgroundColorIndex = xlAutomatic .MarkerForegroundColorIndex = xlAutomatic .MarkerStyle = xlDiamond .MarkerSize = 2End With ActiveChart.PlotArea.Select **End Sub**

Appendix C

Labview 7.1 software implementation of the CMD

Detailed main front panel

Figure 50 Detailed front panel of the main measurement program: CMDC_Menu.vi **Software hierarchy**

Figure 51 Program Hierarchy CMDC_Menu.vi branch CMDC_Measurement.vi

Figure 52 Program Hierarchy CMDC_Menu.vi branch CMDC_Initialization.vi

Figure 53 Program hierarchy for SMPS_SCAN_CPCCXX.vi and SM_RUNC.vi; Both programs are implicitly sub vi's of CMDC_Measurement.vi and therefore not shown in Figure 51.

Table 28Hierarchy of the Main vi's and Sub vi's together with the icons of the Labview 7.1
software for the CMD according to Figure 51-Figure 53

Device	Main vi	Main vi Icon	Sub vi	Sub vi Icon
ASF				
	ASF_INFOC	ASE	ASF_INIT	INIT ASF
	ASF_MEAS	ASF MEAS	ASF_INIT	INIT ASF
	ASF_MEAS	ASF MEAS	IORC	IORC:
ASP				
	ASP_MEASD	ASP MEASI AP, T	IORC	IORC
CMD				
	CMDC_Measurement	-MERQI	SMPS_SPD	
	CMDC_Measurement	c <mark>hé gồi</mark>	SM_RUN	SM41
	CMDC_Initialization	INITIAL	ASF_INFOC	ASF
	CMDC_Measurement	-WERKI	P2T7	P2 T7
	CMDC_Initialization	INITIAL	HUM_MEASC	
	CMDC_Measurement		HUM_MEAS	
	CMDC_Menu	E N N	CMDC_Measurement	c <mark>aliga</mark>
	CMDC_Menu	E N	CMDC_Initialization	INITIAL
	CMDC_Measurement	-MERU	SM_RUNC	SM41
	CMDC_Measurement	-MERCH	STATES	STATES
	CMDC_Initialization		STATESC	STATES CONTI
	CMDC_Measurement		CMDC_SNOTCTRL	SNOT
	CMDC_Measurement	-WERQL	CMDC_INPTCHK	
	CMDC_Measurement		CMDC_FD	FILE
	CMDC_Measurement	chécu	CMDC_TIME	
	CMDC_Measurement		CMDC_VPs	VPs
	CMDC_Measurement		SM_RS	SM41
	CMDC_Measurement		SMPS_SCXX	SMPS
	CMDC_Measurement	c <mark>ože</mark> ů.	MAIN PATH CHOICE	PATH CHOICE
	MAIN PATH CHOICE	PATH	PATH CHOICE	PATH

Device	Main vi	Main vi Icon	Sub vi	Sub vi Icon
	CMDC_Measurement	COAGUL	TMAXSW	PIDELS-S
	CMDC_Initialization	INITIAL	ASP_MEASC	ASP MEAS AP, T
	CMDC_Initialization	INITIAL IZATION	CPC_STATEC	
	CMDC_Initialization	INITIAL IZATION	P2T7C	P2 T7C
	CMDC_Initialization	INITIAL IZATION	SMPS_BASISC	
	CMDC_Initialization	INITIAL IZATION	SM_RUNCNE	SM41
	CMDC_Initialization	INITIAL IZATION	SMPS_INITC	
	CMDC_Measurement	-MERON	SMPS_SCANC_CPCCX	SMPS SCAN
HUM				Contraction Add
	HUM_MEASC		HUM_INIT	ном В
	HUM_MEAS	HUM	IORC	IORC:
	HUM_MEASC	HUM	HUM_MEAS	
SMOT		IMEASU		MEAS
	SM_RUN	SM41	SM_DRV	SM41
	SM_RUN	SM41	SM_STP	SM41
	SM_RUN	SM41	SM_LOGIC	SM
	SM_RUNCNE	SM41	SM_RUN	SM41
	SM_STP	SM41	SM_DRV	SM41
	SM_RUNC	SM41	SM_STP	SM41
	SM_RUNC	SM41	SM_LOGIC	SM
	SM_RUNC	SM41	SM_DRV	SM41
SMPS		KONG		
	SMPS_INITC	SMPS	SMPS_INIT	SMPS
	SMPS_SCANC_CPCCX	SMPS	SMPS_RMV	
	SMPS_INITC	SMPS	SMPS_BASIS	SMPS
	SMPS_INIT	INITC SMPS	SMPS_SFM	
	SMPS_INIT	SMPS	SMPS_SVM	SEM
Device	Main vi	Main vi Icon	Sub vi	Sub vi Icon
--------	------------------	--------------	------------	-----------------------
	SMPS_SCANC_CPCCX		CPC_STATE	STATE
	SMPS_SCANC_CPCCX		ASF_MEAS	ASF
	SMPS_INIT		SMPS_SQS	SMPS
	SMPS_INIT		SMPS_RFL	
	SMPS_SCANC_CPCCX		ASP_MEASD	ASP MEASE AP, T
	SMPS_SCANC_CPCCX		SMPS_SPD	
	SMPS_SCANC_CPCCX		SMPS_BASIS	BASIS
	SMPS_SPD		IORC	IORC
	SMPS_RFL	SMPS	IORC	IORC

CMD stepper motor control

Figure 54 Standard application "SM4xDRV.EXE" from Hasotec for the stepper motor control. Has to be started and closed before running the LABVIEW program to load the driver for the Hasotec driver card into PC-memory.

Software variables in the Labview 7.1 implementation

Table 29	All software variables in the Labview 7.1 implementation for the CMD of shown in the hierarchy in Figure 51-Figure 53.	f the vi's
Name	Description	Unit
ASF	Cluster for Vp4s (sccm/min), OK? (bool)	-
ASP	Cluster for dp3 (Pa); T6 (°C), OK? (bool)	Pa, °C, bool
BFS	Bypass Flow Status is OK? (Yes/No)	bool
BKSTP?	Is true for back stepping	bool
BOT	Bypass blower On Time	h
bxout	Output parameter SMCard SM41 (HASOTECH)	-
BYPASS- FLOW	Bypass flow stable yes/no	bool
C M D C	Cluster for command buttons	-
CBSTLP	Count of back step loops	-
CC	Cumulative Counts since the last measurement from the CPC	-
COMMENT	COMMENT for the documentation of the measurement	text
CONTR	Continuous or stepwise run of stepper motor (true/false)	bool
СОТ	Classifier On Time	h
СРАТН	Input/Output cluster for path i=16;NSM, SF, TTOTALA, TTOTAL, PATHS, TMFILL, TMFILLA, TCOAGUL, TCOAGULA, TSMEAS, TSMEASA, TSCOUNT, TSCOUNTA, TPFILL, TPFILLA, TPCOUNT, TPCOUNTA, TDILUTE, TDILUTEA	-, S
СТ	Cumulative Time of the last measurement from the CPC	S
cxin	Input parameter1 SMCard SM41 (HASOTECH)	-
cxout	Output parameter1 SMCard SM41 (HASOTECH)	-
D1	Intermediate result	bool
D2	Intermediate result	bool
DAORST?	Title or values are written	bool
DATA	Output string of one line	-
Delta t	Time since start of the measurement	S
DeltaDp	Diameter difference in nm for scanning intervals	nm
DIASET	Cluster for monodisperse filling: MDP, OK?	nm, bool
DP	Diameter of Particle	nm
DP Time	Time for scan	-
dp1	Pressure drop impactor (cm H2O)	cm H2O
dp2	Pressure drop across the bypass orifice	mm H2O
dp3	Differential pressure of ASP1400 (CMD settler)	Ра

Name	Description	Unit
dp3_unit	Unit of dp3	-
DPMAX	Diameter of Particle MAXimum that could be measured with SMPS	nm
DPMAXA	Actual DPMAX of SMPS	nm
DPMIN	Diameter of Particle MINimum that could be measured with SMPS	nm
DPMINA	Actual DPMIN of SMPS	nm
dtmin	Minimal time step (500-1000 ms) needed for setting minimal time interval	ms
DVRN	Duplicate of Visa Resource Name	-
dxin	Input parameter2 SMCard SM41 (HASOTECH)	-
dxout	Output parameter2 SMCard SM41(HASOTECH)	-
EMB	Electrical MoBility from SMPS	cm ² /(V*s)
error in	Error in cluster	-
error out	Error out cluster	-
FF	Factor Flow for ASF1430	-
FILE	Output FILE name	-
FT	Factor for Temperature of the ASF sensor	-
FVS	Firmware version of the SMPS	-
GMEAMOD	Operations type	-
HIGH- VOLTAGE	HIGH VOLTAGE OK yes/no	bool
HUM	Cluster for humidity measurement; phi1(%), T8 (°C)	%,°C
HVS	High Voltage Status stable? (Yes/No)	bool
IL	Inner Loop count	-
INIT	Initial flag	bool
INIT OK	Humidity init vi OK?	bool
LOOPA	Actual loop number	-
MB?	Stepper motor (Card) Busy?	bool
MEAS OK	Humidity sub vi measurement OK?	bool
MEASC OK	Humidity main vi measurement OK?	bool
MNA	Model Name (SMPS)	-
MOTOR	Motor Type (0-3) =Std	-
MSW	Milliseconds to wait	ms
Ν	Number of scan intervals	-
N&NA	N & NA	-
NA	Number of actual SMPS scans	-

Name	Description	Unit
NLOOP	Number of loops	-
NROT	N motor ROTations	-
NROT>NTIME	NROT>NTIME?	bool
NSCAN	Cluster for NSCAN, N0SCAN, N1SCAN	-
NSCANA	Cluster for NSCANA, N0SCANA, N1SCANA	-
NSDIST	Flow chart particle concentration versus diameter (raw data)	-
NSM	Number of single measurements	-
NSMA	Actual NSM	-
NSMT	NSM	-
nthM	Actual nth measurement of the monodisperse measurement: Coagulation & Measurement together	-
NTIME	Inner Loop was repeated N-TIMEs	-
Ntot	Total particle counts since last measurement	#
OK?	Status whether command OK? (Yes/No)	bool
P1	Absolute pressure (SMPS sensor)	mbar
P2	Absolute pressure sensor CMD (settler)	mbar
P2T7	P2T7 Cluster; p2 (mbar); T7 (°C); OK?	mbar, °C
PATH Array	Array of paths that are sequentially use for the actual operation	-
Path cluster	Cluster for path settings: Path, V1-8	-
PATHS	Name of path	-
PB	Port Bytes at serial port	-
PB1	Port Bytes	-
PBS	Port Bytes Set?	-
PC?	Percent Complete?	%
phi1	Relative humidity sensor CMD	%
PSS	Particle Size Spacing (type: linear/logarithmic)	-
R0	LIQUID fill is OK? (1/0)	bool
R5	CPC is ready? (1/0)	bool
RA	Number of counts during the last (6s)	-
RB	Number of counts during the last (1s)	-
RBU	Read Buffer	-
RC	Return Count	-
RD	Actual display concentration of CPC	#/cm ³
rgbx	Command code SMCard SM41 (HASOTECH)	-

Name	Description	Unit
ROTDRV1	Number of rotations of needle valve DRV1	rot
RT	Reference Temperature for ASF	°C
RTT	ReTrace Time in seconds	S
RUN	Run path or not?	bool
RV	Reads Vacuum State (0=low vacuum - there might be a problem with the filters; 1=vacuum is OK);	bool
SCS	SCan Status OK? (Yes/No)	bool
SCT	SCan Time in seconds. Scan time for one size distribution measurement	S
SCTA	Actual SCan Time	S
SDMA	Selected DMA (4-0) 4=Model 8081	-
SDP	Dp measurement OK	bool
SDR	Select particle Diameter Range: AUTO/MANUAL (1/0)	bool
SF	Measurement is running?	bool
SFM	Setting blower mode (Dual=D / Single=S)	-
SFS	Sheath Flow Status is OK (Yes/No)	bool
SGAS	Selected Gas Type(5-0)	-
SHEATH FLOW	Sheath flow stable yes/no	bool
SIMP	Selected Impactor (3-0): (2) 0.0457cm; (1) 0.0508cm; (0) 0.0710cm	-
size	Size of the path array	-
SM	Boolean array of optional measurements when false the measurement is omitted; (1)SMPS Scan, (2) RD, (3) Vp4s, (4) dp3	bool array
SMOTOR	Cluster for stepper motor control; SPFA, MB?, STOPIL	-
SMPS	Cluster for SMPS Control; DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS, dtmin, PS?, SCS, SDR	-
SMPS DATA	Cluster for SMPS Data; VP1 (lpm), VP2 (lpm), P1 (mbar), T2 (°C), T3 (°C)	-
SNOT	State machine states	-
SOT	Sheath blower On Time	h
SPD	Select Particle Diameter command OK? (Yes/No)	bool
SPFA	Speed Factor for Stepper Motor Card (20 slow-80 fast)	-
SRD	Rd measurement OK	bool
Standard File?	Select standard or user defined file for data output	bool
START	START button for continuous programs	bool
STATE	Text of the actual valve state of the CMD - Pathx	-
STEA	Toggles between STatus or mEAsurement (1/0) - Status LEDS or particle number measurement	bool

Name	Description	Unit
STOP	Stop of program	-
StopBottom	Control LED for Bottom end switch	-
STOPi	Stop inner loop	bool
STOPIL	Stop inner loop for the stepper motor application to stop continuous run	bool
STOPMOTOR?	Is true if one end switch is true	bool
StopTop	Control LED for TOP end switch	-
STPR	Number of STeps Per Rotation	-
stwait	Set time to wait for time out	S
SVM	Setting Voltage Mode (A=Analog; P=Panel Control)	-
SVP	Vp measurement OK	bool
SWO	Switch off?	bool
SWOFF	Switch off when maximum time has reached	bool
T1	Cabinet temperature	°C
T2	Sheath flow temperature	°C
Т3	Bypass flow temperature	°C
T4	CPC Condenser temperature	°C
T5	CPC Saturator temperature	°C
Т6	ASP temperature	°C
T6_unit	Unit of T6	-
Τ7	CMDC temperature Pt100	°C
Т8	CMD settler: Humidity temperature sensor on EK-H2	°C
ТА	Actual elapsed time	S
TCLEAN	Time for STEP Cleaning of the CMD settler	S
TCLEANA	Actual time for STEP cleaning of the CMD settler	S
TCOAGUL	Time for STEP coagulation	S
TCOAGULA	Actual time for STEP coagulation	S
TFILL	Time for STEP filling the probe into the CMD settler	S
TFILLA	Actual time for STEP filling the probe into the CMD settler	S
TIME	Time cluster; TA, T0, ET	-
TIME0	Time for the beginning of the measurement series (T0)	-
TIMEA	Actual time (TA)	-
TIMER	Time interval for reading data from the hardware	ms
TMAX	Time when SWOFF is switched to true	S
TMEAS	Time for STEP Measurement with the SMPS	S

Name	Description	Unit
TMEASA	Actual time for STEP Measurement with the SMPS	S
TSCAN	Cluster for TSCAN, T0SCAN, T1SCAN, and TIMER	s, ms
TSCAN%	Cluster for TSCAN, T0SCAN, T1SCAN	%
TSCANA	Cluster for TSCANA, T0SCANA, T1SCANA, and SNOT	s, text
ttotal	Time total	S
ttotalm	Total time in milliseconds	ms
twait	Actual time for sub-vi	S
UNIT	Unit for ASF (seem or °C)	-
UPDOWN	Up down control of the stepper motor	bool
V1	State of valve 1	bool
V1-8	Array of valves V1-8 indicating their state:0=off (closed) 1=on (opened)	bool array
V2	State of valve 2	bool
V3	State of valve 3	bool
V4	State of valve 4	bool
V5	State of valve 5	bool
V6	State of valve 6	bool
V7	State of valve 7	bool
V8	State of valve 8	bool
VBALG	Velocity of "BALG"	rpm
VMOT	Motor control velocity (from SM card) - approximately motor velocity	rpm
VOLT	DMA VOLTage	V
VP1	Sample flow rate SMPS	lpm
VP2	Sheath flow rate SMPS	lpm
VP2A	VP2	lpm
VP3	Bypass flow rate SMPS	lpm
VP4	Flow rate of the ASF Sensor	lpm
VP4H	VP4 hexadecimal code	-
VP4s	Flow rate ASF Sensor	sccm
VP4SN	Vp4 Cluster; Vp4s (sccm/min) Vp4 (l/min), OK?	-
VRN	VISA Resource Name - for the manual setting of the COM ports	-
WBU	Write BUffer	-

Devices and corresponding programs

Device and corresponding programs, icons in Labview the variable names and their unit of all vi's used for the CMD Table 30

Device	Name of vi	Icon	Variable		Unit
ASF					
	ASF_INFOC	ASF Rec	ads most setting values of the	ASF1430 sensor	
			error in	Error in cluster	E
			error out	Error out cluster	r:
			Ξ	Factor Flow for ASF1430	81
			FT	Factor for Temperature of the ASF sensor	т
			OK?	Status whether command OK? (Ves/No)	bod
			BB	Port Bytes at serial port	а
			-PB1	Port Bytes	Т
			RB	Number of counts during the last (1s)	a.
			СЯ	Rehum Count	11
			RT	Reference Temperature for ASF	ç
			STOP	Stop of program	a
			UNIT	Unit for ASF (seem or °C)	18
			VRN	VISA Resource Name - for the manual setting of the COM ports	2a
	ASF_INIT	INIT Init ASF	tializes ASF sensor for mean	venent	
			error in	Error in cluster	а
			error out	Error out cluster	Е
			OK?	Status whether command OK? (Yes/No)	bool
			BB	Port Bytes at serial port	а
			VRN	VISA Resource Name - for the manual setting of the COM ports	цў.
			to f aner	26 26	

ASF					nn
ASF			WBU	Write BUffer	18
	MEAS	ASF Meas	urement of the flowrate for	the ASF1430	
			ASF	Cluster for Vp4s (sccm/min), OK? (bool)	a
			error in	Error in cluster	ĩ
			error out	Error out cluster	Ē.
			оК?	Status whether command OK? (Yes/No)	bool
			ВВ	Port Bytes at serial port	г
			RC	Return Count	а
			twait	Actual time for sub-vi	S
			VP4H	VP4 hexadecimal code	Ð
			VP4s	Flow rate ASF Sensor	Sccn
			VRN	VISA Resource Name - for the manual setting of the COM ports	ï
SP					
ASP	WEASC	ASP MEAS	ure the differential pressur	e and temperature with ASP1400 continuously	
		- 64	dp3	Differential pressure of ASP1400 (CMD settler)	Ра
			dp3_unit	Unit of dp3	ii:
			error in	Error in cluster	а
			error out	Error out cluster	Т
			OK?	Status whether command OK? (Yes/No)	bod
			STOP	Stop of program	а
			Тб	ASP temperature	ů

page 2 of 26

The function The function <t< th=""><th>The Lunk The Lunk Left (1) <thleft (1)<="" th=""> Left (1) <th< th=""><th>Device</th><th>Name of vi</th><th>Icon</th><th>Variable</th><th></th><th>Unit</th></th<></thleft></th></t<>	The Lunk The Lunk Left (1) Left (1) <thleft (1)<="" th=""> Left (1) <th< th=""><th>Device</th><th>Name of vi</th><th>Icon</th><th>Variable</th><th></th><th>Unit</th></th<></thleft>	Device	Name of vi	Icon	Variable		Unit
International pressure and temperature with ASP 400 The task: TA, TG, ET Percental pressure and temperature with ASP 400 Percental pressure and temperate pressure and temperature between pressure and tempe	Image Image <t< td=""><td></td><td></td><td></td><td>T6_unit</td><td>Unit of T6</td><td>12</td></t<>				T6_unit	Unit of T6	12
ASP_JAEASD Maser the differential pressure and temperature with ASP 1400 Path Color ASP Cuaser trap 3 (Pa), (FC, ON) (R001) Path Color ASP Cuaser trap 3 (Pa), (FC, ON) (R001) Path Color ASP Cuaser trap 3 (Pa), (FC, ON) (R001) Path Color ASP Enror out Cutser Path Color Path Color ASP Enror out Cutser Enror out Cutser Path Color ASP Enror out Cutser Enror out Cutser Path Color ASP Enror out Cutser Enror out Cutser Path Color ASP Enror out Cutser Enror out Cutser Path Color ASP Enror out Cutser Enror out Cutser Path Color ASP Enror out Cutser Path Color Path Color ASP Enror out Cutser Enror out Cutser Path Color ASP Enror out Cutser Path Color Path Color ASP Astro Color Astro Color Path Color ASP As	AP_ARAD Master the differential pressure and temperature with ASP1400 Pa AP_ARAD AP Cuent on APP (PA) (PA) (PA) (PA) Pa AP AP Cuent on APP (PA) (PA) (PA) Pa AP Cuent on APP (PA) Cuent on APP (PA) (PA) (PA) Pa AP PA Enror out Cuent Pa AP AP And Thefor et ban Pa AP And Thefor et ban Pa AP AP AP AP AP AP AP AP Cuent AP AP Cuent AP Pa AP Cuent AP Pa AP Cuent AP Pa				TIME	Time cluster, TA, T0, ET	а
AP Claser for day 2 (P21, To (*7, 000) Pa, **, 000 da3 Defended pressure of AP1400 (MOD setter) Pa error in Error in claser Error in claser Pa error in Error in claser Error in claser Pa error in Error in claser Error in claser Pa PB Pat Elror in claser Pat Elror Pat Elror REU REU Barn count cluster Pat Elror Pat Elror REU REU Barn count cluster Pat Elror	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		ASP_MEASD	ASP MEAS	Measure the differential pressure c	und temperature with ASP1400	
$\label{eq:hole} \begin{tabular}{ c c c } \hline & $100\end{tabular} &$	$\label{eq:holescale} \mbox{field} fi$				ASP	Cluster for dp3 (Pa); T6 (°C), OK? (bool)	Pa, °C, bool
erroriu Erroriu cluster	errori in cluster errori in clu				dp3	Differential pressure of ASP1400 (CMD settler)	Pa
error di cliste (27) Efro out cluste (27) Satus whether command 04? (Yeshol) [60] (27) Satus whether command 04? (Yeshol) [60] (27) (21) $(21$	$\label{eq:linearity} \mbox{contribution} \qquad \mbox{contribution} \qquad$				error in	Error in cluster	ar.
$\label{eq:contraction} (Sigmed (Sigm$	OK Saus whether command OK7 (resNo) bol PB Pather command OK7 (resNo) bol PB ReU Returned OK7 (resNo) bol RU Returned OK7 (resNo) c c RU Returned OK7 (resNo) c c RU Returned OK7 (resNo) c c RU Returned OK7 Returned OK7 (resNo) c Runc Returned OK7 Returned OK7 c Runc Returned OK7 Returned OK7 c c Runc Returned OK7 Returned OK7 c c Runc Returned OK7 Valid Time for sub-vi c c c Runc Mather Subord Returned OK7 Valid Time for sub-vi c c c Runc Mather Subord Returned OK7 Valid Time for sub-vi c c c c Runc Mather Subord Returned OK7 Valid Time for sub-vi c c c c c c c c c c c c c c c c c				error out	Error out cluster	т
PB Pert Bytes at serial port - RBU RBU Read Buffet - RC Read Buffet - - RC Return Count - - Return Count Set time to wait for time out - - Return Count Return Count - - Return Count <td>PB Path Bytes at senal port REU Red Buffet - REU Red Buffet - - RC Return count - - Rvait Set time to wait for time out - - Rvait Return count - - - Rvait Nran Vran Vran Vran Vran Vran Vran Vran V</td> <td></td> <td></td> <td></td> <td>0K2</td> <td>Status whether command OK? (Yes/No)</td> <td>bool</td>	PB Path Bytes at senal port REU Red Buffet - REU Red Buffet - - RC Return count - - Rvait Set time to wait for time out - - Rvait Return count - - - Rvait Nran Vran Vran Vran Vran Vran Vran Vran V				0K2	Status whether command OK? (Yes/No)	bool
RBU RBU Red Buffet - RC Ret mcbuff - - Rth Ret mcbuff - - NR Ret mcbuff - - NR NR NR Resource Name - for the manual setting of the COM ports - CMDC_FD Math - - CMDC_FD Math - - NR NR Resource Name - for the manual setting of the COM ports - CMDC_FD Math - - CMDC_FD Math - - DAT Output file Data - - DART ASP - - DAT Output set or ender - - DAT - - - DAT - - - DAT - - - DAT - - -	RD RedBuffe - RC Retur Court - RM Retur Court - Stwatt Settime towat for time out - TB Actual time for subvi<				PB	Port Bytes at serial port	т
RC Retur Court * stwat Set time to wait for time out * stwat Set time to wait for time out * To To ASP temperature * Matt Actual time for sub-vi * * VRN VRN VRA Resource Name - for the manual setting of the COM ports * CMDC_FD Matt VRN VRA Resource Name - for the manual setting of the COM ports * CMDC_FD Matt VRN VRA Resource Name - for the manual setting of the COM ports * * CMDC_FD Matt User for odo3 (Pa): T6 (*C). OK? (bool) Pa, *C, bool * PATA Custer for odo3 (Pa): T6 (*C). OK? (bool) Pa, *C, bool * DATA Custer for odo3 (Pa): T6 (*C). OK? (bool) Pa, *C, bool * DATA Custer for odo3 (Pa): T6 (*O). OK? (bool) Pa, *C, bool * DATA Custer for odo3 (Pa): T6 (*O). OK? (bool) Pa, *C, bool * DATA Custer for odo3 (Pa): T6 (*O). OK? (bool) Pa, *C, bool * DATA Custer for odo3 (Pa): T6 (*O). OK? (bool) Pa, *C, bool *	RC Reun Court * streat Settime to wait for time out * streat Set mene to wait for time out * Te ASP Experienter * Met Actual time for sub-vi * NN VRN VISA Resouce Name - for the manual seting of the COM ports * CMDC_FD Matual field Data) * CMDC_FD Matual field Data) * DACTE Data fine or values are writen * DACTE Data field Data) * DACTE Matual field Oatel * DACTE <td></td> <td></td> <td></td> <td>RBU</td> <td>Read Buffer</td> <td>Ť.</td>				RBU	Read Buffer	Ť.
Find the state of the contribution of the contrib	strate strate to wait for time out s TB ASP temperature s TB ASP temperature c Matt Actual time for subvi c Matt Actual time for subvi s VRN VISA Resource Name - for the manual setting of the COM ports c CMDC_FID Mat VISA Resource Name - for the manual setting of the COM ports c CMDC_FID Math Name - for the manual setting of the COM ports c CMDC_FID Math Output file formating (File Data) c DART Output file formating (File Data) c c DART Output string of one line c c DART Output string of one line c c				RC	Return Count	a
T6 T6 ASP temperature *** Mait Actual time for subvi *** *** VRN VRN VISA Resource Name - for the manual setting of the COM ports ** CMDC_FD M VISA Resource Name - for the manual setting of the COM ports ** CMDC_FD M VISA Resource Name - for the manual setting of the COM ports ** CMDC_FD M VISA Resource Name - for the manual setting of the COM ports ** CMDC_FD M VISA Resource Name - for the manual setting of the COM ports ** CMDC_FD M VISA Resource Name - for the manual setting of the COM ports ** DATA DATA Custer for oda (Pa): T6 (*C). OK? (bool) Pa/* ** DATA DATA Custer fing MDP. OK? ** ** DASET Custer for monodisperse filling. MDP. OK? ** ** DASET Custer for monodisperse filling. MDP. OK? ** **	Total time for subvit ************************************				stwait	Set time to wait for time out	S
Image: Name of a statistic statis statistic statistic statistic statistic statistic stati	Imate Imate Actual time for sub-vi s CMD VRN VRA Resource Name - for the manual setting of the COM ports s CMDC_FD Image Output file formatting (File Data) s DATA Output file or values are written bod DATA Output string of one line s DATA Output string of one line s				ΤĠ	ASP temperature	Ŷ
CMD VRN VISA Resource Name - for the manual setting of the COM ports · CMDC_FD Image: Section of the formatting (File Data) ASP Custer for db3 (Pa); T6 (°C), 0K? (bod) Pa, °C, bod CMDC_FN Image: Section of the orbit of	CMD VRN VISA Resource Name - for the manual setting of the COM ports · CMDC_FD M Visa Resource Name - for the manual setting of the COM ports · CMDC_FD M Visa Resource Name - for the manual setting of the COM ports · CMDC_FD M ASP Custer for do3 (Pa); T6 (°C), OK? (bool) Pa, °C, bool DAP DAP Custer for do3 (Pa); T6 (°C), OK? (bool) Pa, °C, bool DAP DAP Cutter for values are written bool DAT Output string of one line · · DASE Custer for monodisperse filling MDP, OK? m, bool				twait	Actual time for sub-vi	S
CMDC_FD Image: CMDC_FD Image: CMDC_FD Part of the formatting (File Data) CMDC_FD Image: CMDC_FD Part of the formatting (File Data) ASP Cluster for db3 (Pa); T6 (°C), OK? (bool) Pa, °C, bool ASP Cluster for db3 (Pa); T6 (°C), OK? (bool) Pa, °C, bool ASP Cluster for db3 (Pa); T6 (°C), OK? (bool) Pa, °C, bool ASP Cluster for values are written bol DATA Utput string of one line - DASET Cluster for monodisperse filing MDP, OK? m. bod	CMD CMDC_FD MC_FD ASP DACRT7 DACRT7 DACRT7 Title or values are written DATA DATA DATA DATA DATA DATA DATA DAT				VRN	VISA Resource Name - for the manual setting of the COM ports	ю
CMDC_FD Image: CMDC_PD Image: CMDC_PD Part of the Data ASP Cluster for db3 (Pa); T6 (°C), OK? (bool) Pa, °C, bool ASP Cluster for values are written Pa, °C, bool DATA Utput string of one line bool DASE Output string of one line -	CMDC_FD Image: CMDC_FD Image: CMDC_FD Part of the Data ASP Custer for db3 (Pa); T6 (°C), OK? (bool) Pa, °C, bool ASP Custer for values are written Pool DAORST? Title or values are written bool DATA Output string of one line . DASET Custer for monodisperse filling; MDP, OK? mm, bool	CMD					
ASP Cluster for db3 (Pa): T6 (°C), OK? (bod) Pa, °C, bod DAORST? Title or values are written bod DATA Output string of one line - DIASET Cluster for monodisperse filing: MDP, OK? mn, bod	ASP Cluster for dp3 (Pa); T6 (°C), OK? (bod) Pa, °C, bod DAORST? Title or values are written bod DATA Output string of one line - DIASET Outser for monodisperse filling: MDP, OK? nm, bod		CMDC_FD	FILE	Output file formatting (File Data)		
DAORST? Title or values are written bool DATA Output string of one line - DIASET Cluster for monodisperse filling: MDP, OK? nm, bool	DAORST? Title or values are written bool DATA Output string of one line - DASET Outster for monodisperse filling: MDP, OK? nm, bool				ASP	Cluster for dp3 (Pa); T6 (°C), OK? (bod)	Pa, °C, bool
DATA Output string of one line DIASET Cluster for monodisperse filling: MDP, OK? nm, bool	DATA Output string of one line DIASET Cluster for monodisperse filling: MDP, OK? nm, bool				DAORST?	Title or values are written	bool
DIASET Cluster for monodisperse filling: MDP, OK? nm, bool	DIASET Cluster for monodisperse filling: MDP, OK? nm, bool				DATA	Output string of one line	зř
	3 C 10 C 2000				DIASET	Cluster for monodisperse filling: MDP, OK?	nm, bool

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Device	Name of vi	Icon	Variable		Unit
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$				DPMAXA	Actual DPMAX of SMPS	Ę
$ \partial (E - E - E - E - E - E - E - E - E - E $				DPMINA	Actual DPMIN of SMPS	ши
HOM Custor for humidity measurement, phill(8), 16 (C) %: C N Number of scan manuals Number of scan manuals Number of scan manuals NRMA NRMA Number of scan manuals Number of scan manuals Number of scan manuals NRMA NRMA Number of scan manuals Number of scan manuals Number of scan manuals Number of scan manuals NRMA Number of scan manuals Number				GMEAMOD	Operations type	г
N Number of scan intervals N NA NA NA NA NA NA NA Namber of scan intervals - NA Namber of cutal SNPS scans - NA Namber of scans - NA Namor SNPS scans -				MUH	Cluster for humidity measurement, phi1(%), T8 (°C)	%,°C
NRM NRM NRM SA NA Number of actual SMPS scans - NA Actual NSM - - NAM Actual NSM - - NAM Actual NSM - - NAM Actual NSM - - P3T1 P2T1 Cluster, p2 (mba), 17 (°C), O(?) - - PATS Name of path - - - RODRV1 Name of path - - - - RODRV1 Name of path - - - - - RODRV1 Name of path - <				Z	Number of scan intervals	ï
NA Number of actual SMPS seens - NSMA Actual NSM - - NSMA Actual NSM - - - P217 Cluster, p2 (mbar), T/ (C), 0K7 mbar, C - - - P217 ROTDKU1 Number of rotations of needle value DRV1 nto - ROTDKU1 Number of rotations of needle value DRV1 nto - - ROTDKU1 Number of rotations of needle value DRV1 nto - - ROTDKU1 Number of rotations of needle value DRV1 nto - - ROTDKU1 Number of rotations of needle value DRV1 nto - - RODC_INITIOLIS State machine states - - - - - RODC_INITIOLIS TSCANA Outster for TSCANA, TOSCANA, TISCANA, and SNOT - - - - - RODC_INITIOLIS Monter of rotations of needle value SNOT Nter for Contentin Vp4 (trinn), Or(2) - - - - - - - - - - - - - - - -				N&NA	N & NA	Ð
NEMA Atual NSM Neme ($path$ Path (C), OK? Mear (C) PATHS PATHS Name of path - - PATHS Name of path - - - - PATHS Name of path - - - - - PATHS Name of path - - - - - - PATHS Name of path Number of rotations of needle value DRV1 -				NA	Number of actual SMPS scans	a
P217 P217 Luster, p2 (mban); 17 (°C), 0K7 mbar, °C PATHS Name of path Name of path \sim PATHS Name of path Name of path \sim ROTDRV1 Number of rotations of needle vake DRV1 \cot \cot SMPS Custer for SMPS control. DPMIN, DPMAX, DP, RD, SCT, SCT, SCT, PSS, SCS, SDR \cot \cot SMPS Custer for SMPS control. DPMIN, DPMAX, DP, RD, SCT, SCT, SCT, PSS, SCS, SDR \cot \cot SMPS Custer for SMPS control. DPMIN, DPMAX, DP, RD, SCT, SCT, SCT, SCT, SCT, SCT, SCT, SCT				NSMA	Actual NSM	ĩ
PATHS Name of path I				P2T7	P2T7 Cluster; p2 (mbar); T7 (°C); OK?	mbar, °C
ROTDRV1 Number of neadlow adve DRV1 not SMPS Gluster for SMPS Control. DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS - SMPS DATA Gluster for SMPS Control. DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS - SMPS DATA Gluster for SMPS Control. DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS - SMPS DATA Gluster for SMPS Data, VP1 (tpm), VP2 (pm), P1 (mban, T2 (*C), T3 - SNOT SRPA Gluster for SMPS Data, VP1 (tpm), VP2 (pm), P1 (mban, T2 (*C), T3 - SNOT SRPA Gluster for SMPS Data, VP1 (tpm), VP2 (pm), P1 (mban, T2 (*C), T3 - - SNOT SRPA Quester for SMPS Data, VP1 (tpm), VP2 (pm), P1 (mban, T2 (*C), T3 - - STAN Cluster for SMPS Data, VP1 (tpm), VP2 (pm), P1 (mban, T2 (*C), T3 - - - SNDC_INTERLE Immin VP4 Cluster, VP4 (sccm/m1) VP4 (l/m1), OK7 - - - CMDC_INTERLE Immin VP4 Cluster, VP4 (sccm/m1) VP4 (l/m1), OK7 - - - CMDC_INTERLE Immin VP4 Cluster, VP4 (sccm/m1) VP4 (l/m1), OK7 - - - CMDC_INTERLE Immin CMD cluster for commanduters - - - -				PATHS	Name of path	а
SMPS Custer for SMPS Control. DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS, CTA, PSS, SCA, SDR - SMPS DATA Custer for SMPS Data, VP1 (pm), VP2 (pm), P1 (mbah, T2 (°C), T3 - SNOT Stet machine states - - SNOT Stet machine states - - SNOT Stet machine states - - - SNOT Stet machine states - - - - SNOT Stet machine states - - - - - SNOT Stet machine states - <td></td> <td></td> <td></td> <td>ROTDRV1</td> <td>Number of rotations of needle valve DRV1</td> <td>rot</td>				ROTDRV1	Number of rotations of needle valve DRV1	rot
CMDC_Initialization Image: First SMPS Data; VP1 (Ipm), VP2 (Ipm), P1 (Imbar), T2 (°C), T3 - SNOT State machine states - - SNOT State machine states - - SNOT State machine states - - - SNOT State machine states - - - - SNDC_Initialization Image: First Not Not Not Not Not Not Not Not Not No				SMPS	Cluster for SMPS Control; DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS, dmin, PS?, SCS, SDR	321
SNOT State machine states - SPEA Spead Factor for Stepper Motor Card (20 slow-80 fast) - FX TSCANA Custer for TSCANA, TISCANA, and SNOT - TSCAND Under for TSCANA, TOSCANA, TISCANA, and SNOT - - CMDC_Initialization Immuno VP4S VP4 Cluster, VP4S (sccm/min), OK? - CMDC_Initialization Immuno VP4 Cluster, VP4S (sccm/min), OK? - - CMDC_INPTCHK Immuno CMD cluster initialization and text procedures - - CMDC_INPTCHK Immuno CMD cluster initialization and text procedures - - CMDC_INPTCHK Immuno CMD cluster initialization and text procedures - - CMDC_INPTCHK Immuno CMD cluster initialization and text procedures - - CMDC_INPTCHK Immuno CMD cluster initialization and text procedures - - - CMDC_INPTCHK Immuno CMD cluster initialization and text procedures - - - - CMDC_INPTCHK Immuno CMD cluster initialization and text procedures - - - -				SMPS DATA	Cluster for SMPS Data, VP1 (lpm), VP2 (lpm), P1 (mbar), T2 (°C), T3 (°C)	а
SPEA Speed Factor for Stepper Motor Card (20 slow-80 fast) - TSCANA TSCANA Custer for TSCANA, TISCANA, and SNOT s, text CMDC_Initialization Immun VP4SN VP4 Cluster, VP48 (sccm/min), OK? - CMDC_Initialization Immun CMD main program initialization and test procedures - - CMDC_INPTCHK Imm CMD sub vi for checking the input DATA an initializiting the clusters for measuring - - CMDC_INPTCHK Imm Immun NSCAN Custer for NISCAN, NISCAN - -				SNOT	State machine states	
TSCANA TSCANA Cluster for TSCANA, TISCANA, and SNOT s, text VP4SN VP4SN VP4 Cluster, VP4s (sccm/min), OK7 - CMDC_Initialization Immai VP4 Cluster, VP4s (sccm/min), OK7 - CMDC_Initialization Immai CMD main program initialization and test procedures - CMDC_INPTCHK Immai CMD sub vi for checking the input DATA an initializing the clusters for measuring - CMDC_INPTCHK Immai CMD sub vi for checking the input DATA an initializing the clusters for measuring -				SPFA	Speed FActor for Stepper Motor Card (20 slow-80 fast)	-0
CMDC_Initialization INTIAL VP4SN Vp4 Cluster, Vp4s (sccm/min), OK? - CMDC_Initialization INTIAL CMD main program initialization and test procedures - CMDC_INPTCHK INDIA CMD sub vi for checking the input DATA an initializing the clusters for measuring - CMDC_INPTCHK INDIA NSCAN Outster for NSCAN, NISCAN, NISCAN, NISCAN, NISCAN, NISCAN -				TSCANA	Cluster for TSCANA, T0SCANA, T1SCANA, and SNOT	s, text
CMDC_Initialization INTAL CMD main program initialization and test procedures IZATION IZATION CMD control CMDC_INPTCHK IND sub vi for checking the input DATA an initializing the clusters for measuring CMDC_INPTCHK NSCAN Uster for NSCAN, NISCAN, NISCAN				VP4SN	Vp4 Cluster, Vp4s (sccm/min) Vp4 (l/min), OK?	16
CMDC_INPTCHK Input CMD sub vi for checking the input DATA an initializing the clusters for measuring one of the clusters for measuring has a contract of the clusters for measuring one of the cluster of the clusters for measuring one of the cluster of the clusters for measuring one of the cluster of the cluster of the clusters for measuring one of the cluster of the cluster of the clusters for measuring one of the cluster o		CMDC_Initialization	INITIAL CMD main prog	gram initialization a	nd test procedures	
CMDC_INPTCHK INPUT CMD sub vi for checking the input DATA an initializing the clusters for measuring or any				CMDC	Cluster for command buttons	na:
NSCAN Cluster for NSCAN, N1SCAN		CMDC_INPTCHK	INPUT CMD sub vi for	checking the input 1	DATA an initializing the clusters for measuring	
				NSCAN	Cluster for NSCAN, N0SCAN, N1SCAN	

page 4 of 26

vice	Name of vi	Icon	Variable		
			NSCANA	Cluster for NSCANA, N0SCANA, N1SCANA	
			SCT	SCan Time in seconds. Scan time for one size distribution measurement	
			STOP	Stop of program	
			TIMER	Time interval for reading data from the hardware	
			TSCAN	Cluster for TSCAN, TOSCAN, T1SCAN, and TIMER	
			TSCAN%	Cluster for TSCAN, T0SCAN, T1SCAN	
			TSCANA	Cluster for TSCANA, T0SCANA, T1SCANA, and SNOT	
	CMDC_Measuremen	tt MERGIN CMD	main programm for all me	aswements	
		n.cmcno	ASP	Cluster for dp3 (Pa); T6 (°C), OK? (bool)	
			COMMENT	COMMENT for the documentation of the measurement	
			CPATH	Input/Output cluster for path i=16.NSM, SF, TTOTALA, TTOTAL, PATHS, TMRIU, TMRIU, A TCOAGUI, TCOAGUI, A TSMEAS	
			DIASET	Cluster for monodisperse filling: MDP, OK?	
			DPMAXA	Actual DPMAX of SMPS	
			DPMINA	Actual DPMIN of SMPS	
			FILE	Output FILE name	
			MUH	Cluster for humidity measurement; phi1(%), T8 (°C)	
			Z	Number of scan intervals	
			NA	Number of actual SMPS scans	
			NSCAN	Cluster for NSCAN, N0SCAN, N1SCAN	
			NSCANA	Cluster for NSCANA, N0SCANA, N1SCANA	
			NSM	Number of single measurements	

156/177

page 5 of 26

Device	Name of vi	Icon	Variable		Unit
2212	as for summer	1001			1110
			nthM	Actual nth measurement of the monodisperse measurement: Coaculation&Measurement toorether	9
			OK?	Status whether command OK? (Yes/No)	bool
			P2T7	P2T7 Cluster; p2 (mbar); T7 (°C); OK?	mbar, °C
			Path cluster	Cluster for path settings: Path, V1-8	t
			ROTDRV1	Number of rotations of needle valve DRV1	to
			SM	Boolean array of optional measurements when false the measurement i omitted: (1)SMPS Scan, (2) RD, (3) Vp4s, (4) dp3	s bool arra
			SMOTOR	Cluster for stepper motor control; SPFA, MB?, STOPIL	э
			SMPS	Cluster for SMPS Control: DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS, dtmin, PS7, SCS, SDR	I
			SMPS DATA	Cluster for SMPS Data: VP1 (lpm), VP2 (lpm), P1 (mbar), T2 (°C), T3 (°C)	ĩ
			SNOT	State machine states	ŭ
			START	START button for continuous programs	bool
			STATE	Text of the actual valve state of the CMD - Pathx	э
			STOP	Stop of program	ĩ
			TCLEAN	Time for STEP Cleaning of the CMD settler	S
			TCLEANA	Actual time for STEP cleaning of the CMD settler	S
			TCOAGUL	Time for STEP coagulation	S
			TCOAGULA	Actual time for STEP coagulation	S
			TLFILL	Time for STEP filling the probe into the CMD settler	Ś
			TFILLA	Actual time for STEP filling the probe into the CMD settler	S
			TIME	Time cluster; TA, T0, ET	c
			TMEAS	Time for STEP Measurement with the SMPS	S
			TMEASA	Actual time for STEP Measurement with the SMPS	S

page 6 of 26

Device	Name of vi	Icon	Variable		Unit
			TSCAN	Cluster for TSCAN, T0SCAN, T1SCAN, and TIMER	s, ms
			TSCAN%	Cluster for TSCAN, T0SCAN, T1SCAN	%
			TSCANA	Cluster for TSCANA, T0SCANA, T1SCANA, and SNOT	s, text
			V1-8	Array of valves V1-8 indicating their state.0=off (closed) 1=on (opened)	bool array
			NP4SN	Vp4 Cluster, Vp4s (sccm/min) Vp4 (I/min), OK?	т
	CMDC_Menu	S M M M M M M M M M M M M M M M M M M M	AD main program		
			CMDC	Cluster for command buttons	ı
			Standard File?	Select standard or user defined file for data output	bool
	CMDC_SNOTCTRL	SNOT CI	MD sub program for the choice o	f the SCAN mode in measuring mode	
		5	LOOPA	Actual loop number	
			NLOOP	Number of loops	IC.
			NSCANA	Cluster for NSCANA, N0SCANA, N1SCANA	sh
			NSCANA	Cluster for NSCANA, NDSCANA, N1SCANA	a'
			STOPi	Stop inner loop	bool
			TIMER	Time interval for reading data from the hardware	SM
			TSCAN%	Cluster for TSCAN, T0SCAN, T1SCAN	%
			TSCANA	Cluster for TSCANA, T0SCANA, T1SCANA, and SNOT	s, text
	CMDC_TIME	TIME TIME TIME	ilculates actual and total time		
		TIME	TIME	Time cluster; TA, T0, ET	a.
			TIME0	Time for the beginning of the measurement series (T0)	'n
			TIMEA	Actual time (TA)	12
			page 7 of 26		

Device	Name of vi	Icon	Variable		Unit
	CMDC_VPs	VPs	Calculates the sample flow		
			Ρ2	Absolute pressure sensor CMD (settler)	mbar
			17	CMDC temperature Pt100	Ŷ
			VP4	How rate of the ASF Sensor	hpm
			VP45	Flow rate ASF Sensor	sccm
	IORC	(ORC	Calculates the time and the por	t bytes of the serial interface	
			DVRN	Duplicate of Visa Resource Name	ä
			error in	Error in cluster	ĩ
			error out	Error out cluster	Ċ.
			PB	Port Bytes at serial port	
			PBS	Port Bytes Set?	15
			stwait	Set time to wait for time out	IJ
			twait	Actual time for sub-vi	o N
			VRN	VISA Resource Name - for the manual setting of the COM ports	E.
	MAIN PATH CHOIC	E PATH CHOICE	Choice of the actual path		
		MAIN	CPATH	Input/Output cluster for path i=16NSM, SF, TTOTALA, TTOTAL, PATHS TMBIIL TMBILLA TOTARILLA TOTARULA TSMERS	S
			IL	Inner Loop count	л
			NSMA	Actual NSM	12
			NSMT	WSN	a
			PATHS	Name of path	н
			RUN	Run path or not?	bool
			pade 8 of	9	

Device	Name of vi	Icon	Variable		Unit
			SF	Measurement is running?	bool
	PATH CHOICE	PATH Chooses the pa	th according to ope	ration	
			GMEAMOD	Operations type	a
			MSM	Number of single measurements	к
			NSMT	WSN	¢2
			PATH Array	Array of paths that are sequentially use for the actual operation	.I
			size	Size of the path array	1ŝ
	TMAXSW	Transa Calculates acti	al time		
		4	SWOFF	Switch off when maximum time has reached	bool
			ТА	Actual elapsed time	S
			TIMER	Time interval for reacing data from the hardware	ms
			TMAX	Time when SWOFF is switched to true	Ŋ
CPC					
	CPC_STATE	Reads out the a	lifferent states of CI	PC / Initializes CPC	
		STATE	00	Oumulative Counts since the last measurement from the CPC	ŝi
			CT	Cumulative Time of the last measurement from the CPC	ូល
			error in	Error in cluster	1 ²
			error out	Error out cluster	ŝi.
			RO	LIQUID fill is OK? (1/0)	bool
			R5	CPC is ready? (1/0)	bool
			RA	Number of counts during the last (6s)	a
			pade 9 of 26		

Device	Name of vi	TLOT	V artable		Unit
			RB	Number of counts during the last (1s)	62
			RD	Actual display concentration of CPC	#/cm^3
			RV	Reads Vacuum State (0=low vacuum - there might be a problem with the filters; 1=vacuum is ON;	bool
			SRD	Rd measurement OK	bool
			STEA	Toggles between STatus or mEAsurement (1/0) - Status LEDS or particle number measurement	bool
			Τ4	CPC Condenser temperature	ç
			Т5	CPC Saturator temperature	ç
			ttotalm	Total time in milliseconds	sm
	CPC_STATEC	Reads out the c	different states of C.	PC / Initializes CPC continuously	
		STATE	0	Cumulative Counts since the last measurement from the CPC	15)
			CT	Cumulative Time of the last measurement from the CPC	S
			error in	Error in cluster	τ
			error out	Error out cluster	ii:
			RO	LIQUID fill is OK? (1/0)	bool
			R5	CPC is ready? (1/0)	bool
			RA	Number of counts during the last (6s)	-21
			RB	Number of counts during the last (1s)	51
			RD	Actual display concentration of CPC	#/cm^3
			RV	Reads Vacuum State (0=low vacuum - there might be a problem with the filters, 1=vacuum is ON).	bool
			STEA	Toggles between STatus or mEAsurement (1/0) - Status LEDS or particle number measurement	bool
			OTOD	Of an of an area of an	

page 10 of 26

Total Total Concontense termentume Total To	14 CPC Conductor Forepreadure \odot DAC 75 CPC Saturator Forepreadure \odot DAC 75 CPC Saturator Forepreadure \odot DAC 277 100 CPC Saturator Forepreadure \odot P277 7 100 Saturator Forepreadure \odot \odot P277 7 100 Saturator Forepreadure \odot \odot P277 7 100 Saturator Forepreadure \odot \odot P277 7 100 Saturator Forebreadure \odot \odot P277 7 100 \odot \odot \odot \odot P277 7 100 200 200 200 \odot <	Device	Name of vi	Icon	Variable		Unit
DAC 15 CPC Statistor fencentiation 5 DAC Time total s treat total s 1277 Treat DAC DAC back intercentiation bod 1277 Treat DAC Satus whether command OK? (reshto) bod bod 1277 Treat DAC DAC DAC bod bod bod 1277 Treat DAC DAC DAC DAC bod bod bod 1277 Treat DAC DAC DAC DAC DAC DAC DAC DAC DAC 1277 Treat DAC 1277 Treat DAC DAC <td>The constraint of the interval of the interval</td> <td></td> <td></td> <td></td> <td>Т4</td> <td>CPC Condenser temperature</td> <td>Ŷ</td>	The constraint of the interval				Т4	CPC Condenser temperature	Ŷ
DAC Interced Three total Interced P277 T T Sauss whether command OK (Yee/No) with the N-D4 Q SC3345 P277 T OK Sauss whether command OK (Yee/No) bod P2 Accurres the pressure and the temperature in the CMD Badg (accordeou) with the N-D4 Q SC3345 mean P2 P2 Absolue pressure and the temperature in the CMD Badg (accordeou) with the N-D4 Q SC3345 mean P2 T T OC Charge pressure and the temperature in the CMD settler with the N-D4 Q SC3345 mean P277C T T OC Charge pressure and the temperature in the CMD settler with the N-D4 Q SC3345 mean P277C T T OC Charge pressure and the temperature in the CMD settler with the N-D4 Q SC3345 mean P277C T T T OC Charge pressure and the temperature in the CMD settler with the N-D4 Q SC3345 mean P277C T T T T T P277C T T Conditioned T P277C T T Conditioned T P277C T T Conditioned T P277C T D D D P277C T D D D P277C T	DAC The total The total The total is an interval of the pressure and the emperature in the CMD Balg (accordson) with the NFD(0.02345 P217 T O(2) Status whether command O(2) (YeSNO) Do(1) P217 T P217 P217 Cluster, p2 (miss), T7 (C) (XY) miss. P217 T T O(2) Status whether command O(2) (YeSNO) Do(2) P217 T T O(2) Status whether command O(2) (YeSNO) Do(2) P217 T T O(2) Status whether command O(2) (YeSNO) Do(2) P217 T T O(2) Status whether command O(2) (YeSNO) Do(2) P217 T T O(2) Status whether command O(2) (YeSNO) Do(2) P217 T T T T Do(2) P217 T T O(2) Status whether command O(2) (YeSNO) Do(2) P217 T T T T Do(2) Do(2) P217 T T T Do(2) Do(2) Do(2) P217 T T T Do(2) Do(2) Do(2) P217 T T T Do(2) Do(2) Do(2) P21<				Τ5	CPC Saturator temperature	Ô
DAC P317 Restores the pressure and the temperature in the CMD Balg (accordeon) with the M-DA(0 SC3345 P317 T Net the pressure and the temperature in the CMD Balg (accordeon) with the M-DA(0 SC3345 P217 P2 Absolute pressure senser CMD (setter) bot P217 T CMD camperature F100 c P217 T CMD camperature F100 c P217 Measures the pressure and the temperature F100 c P217 T CMD camperature F100 c P217 T CMD camperature F100 c P217 T CMD settler with the M-DA(0 SC3345 continuously enter the manual occordeon) with the M-DA(0 SC3345 continuously enter the manual occordeon) c P217 T CMD camperature F100 c P2170 T T c P2170 T C Absolute pressure and the temperature F100 c P2170 T T c c P2170 T Absolute pressure and the temperature F100 c c P2170 T Absolute pressure and the temperature F100 c c P104 T T Absolute pressure and the temperature F100 c c P104 T T C Absolut	DAQ P217 P217 P21				ttotal	Time total	S
P217 P217 P21 Macaurest the pressure and the temperature in the CMD Bag (accordeon) with the NI-DAO SC2345 0K3 Balas whether command OK3 (YeeNo) bod 0K4 P217 P217 P217 bod P217 P217 P217 P217 CVC) main P217 P217 P217 P217 P217 main P2175 P217 P217 P217 CVC) main P2175 P217 P217 CVC) main main P2175 P217 P217 CVC) CVC) main P2175 P217 P217 CVC) CVC) CVC main P2175 P217 P217 P217 CVC) CVC main P2175 P217 P2 CVC) CVC) CVC CVC P2175 P217 P2 CVC) CVC CVC CVC P2177 P2 CVC CVC) CVC CVC CVC P2177 P2 CVC CVC) CVC CVC CVC CVC P2177 P2 CVC CVC CVC CVC CVC CVC P2 P2 CVC <td>P217 P217 P21 Macaures the pressure and the temperature in the CMD Balg (accordson) with the NI-DAQ SC3345 0K1 Raus whether command OK? (Yes/No) bod 0K2 Raus whether command OK? (Yes/No) bod P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 CMD C temperature F100 C P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 Absolute pressure sensor CMD (settle) mon. P2 CMD C temperature F100 C C P2 Absolute pressure sensor CMD (settle) mon. C P3 Absolute pressure sensor CMD (settle) <</td> <td>DAQ</td> <td></td> <td></td> <td></td> <td></td> <td></td>	P217 P217 P21 Macaures the pressure and the temperature in the CMD Balg (accordson) with the NI-DAQ SC3345 0K1 Raus whether command OK? (Yes/No) bod 0K2 Raus whether command OK? (Yes/No) bod P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 CMD C temperature F100 C P217C P2 Absolute pressure sensor CMD (settle) mon. P217C P2 Absolute pressure sensor CMD (settle) mon. P2 CMD C temperature F100 C C P2 Absolute pressure sensor CMD (settle) mon. C P3 Absolute pressure sensor CMD (settle) <	DAQ					
Image: Figure Sector CMC (section) Dot P217C P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) Dod P217C P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) Max.* P217C P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) Max.* P217C P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) Max.* P217C P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C P217C P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C P217C P21 T1 OutClester, P2 (mdar), T1 (C0, OK? (resMo)) C P217C P21 P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C C P217C P21 P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C C P217 P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C C P217 P217 P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C P217 P217 P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C P217 P217 P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C P217 P217 P217 Cluster, P2 (mdar), T1 (C0, OK? (resMo)) C P217 P217 P217 (mdar) C P217 P217 P217 (mdar) C P217 P217 (mdar) P217 (mdar) <	$HML M = \frac{1}{10} + \frac$		P2T7	P2 T7	easures the pressure and the	temperature in the CMD Balg (accordeon) with the 1	VI-DAQ SC2345
P2 Absolute pressure sensor CMD (settlet) mbar P217 P217 Custes, p2 (mean); T7 (°C), OK? mear.* P217 T OVD Cemperture P1100 °C P217 T Enror out Custer °C P217 T Contrinuously °C P217 T Enror out Custer °C P217 OVD Cemperture P1100 °C °C P217 CHC Stabs whether command OK? (YesNo) P00 P21 C Staps of program °C P21 T C °C P21 T C °C P21 T C °C °C P21 Enror out Custer °C °C P21 Enror out Custer °C °C P21 T C °C P21 Enror out Custer °C P21 C °C	P217 P217 Asolute pressure sensor CMC(sette) mber P217 P217 P217 Custer, p2 (mben), T7 (*C), 0K? mber P217 T OxDC temperature PT100 *C P217 T OxDC temperature PT100 *C P217 T OxDC temperature PT100 *C P217 T C Statis whether command OK? (*esNo) Nod P217 T C Statis whether command OK? (*esNo) Nod P217 T C Statis whether command OK? (*esNo) Nod P217 T T C ND P21 T T T C C P210 Statis whether command OK? (*esNo) ND C P210 Statis whether command OK? (*esNo) C C P101 T T C C P101 T T C C P101 T T <td></td> <td></td> <td></td> <td>OK?</td> <td>Status whether command OK? (Yes/No)</td> <td>bool</td>				OK?	Status whether command OK? (Yes/No)	bool
P2T1 P2T7 Cluster, p2 (mbat), T/ (C), OK? mbat, mag, T/ T_1 CMDC temperature P100 C T_1 CMDC temperature P100 C T_1 CMDC temperature P100 C T_1 Accurate P100 C T_2 Measures the pressure and the temperature in the CMD settler with the M-DAQ SC3345 continuously C T_2 Measures the pressure and the temperature in the CMD settler with the M-DAQ SC3345 continuously C C T_2 Measures the pressure and the temperature in the CMD settler with the M-DAQ SC3345 continuously C C T_2 Measures the pressure and the temperature in the CMD settler with the M-DAQ SC3345 continuously C C T_2 Measures the pressure and the temperature in the CMD settler with the M-DAQ SC3345 continuously C C T_2	P217 P217 Cluster, p2 (mbal), 17 (°C), 0(°) mbar, v 77 77 0 (DC temperature P100 °C P217C 77 0 (DC temperature P100 °C P217 77 0 (DC temperature P100 °C P217 0 (DC temperature P100 °C °C P101 77 77 77 °C °C P101 77 77 77 77 °C °C P101 77 77 77 77 77 °C °C P101 77 77 77 77 77 °C °C P101 77 77 77 77				P2	Absolute pressure sensor CMD (settler)	mbar
T7 T7 CMOC temperature P100 C P2TVC T0 Measures the pressure and the temperature in the CMD settler with the NI-DAQ SC3315 continuously error in duster C P2TVC T0 Measures the pressure and the temperature in the CMD settler with the NI-DAQ SC3315 continuously error in duster C C P2TVC T0 T0<	The implementation The impl				P2T7	P2T7 Cluster; p2 (mbar); T7 (°C); OK?	mbar, °C
P277C Resures the pessure and the temperature in the CMD settler with the N-DAQ SC3345 continuously P277C Find Error in cluster Error in cluster Error in cluster P17 CV Satus whether command OK? (YresNo) Dod P2 Absolute pressure sensor CND (settler) Dod P2 Absolute pressure sensor CND (settler) Dod P2 Absolute pressure sensor CND (settler) Dod P3 Absolute pressure sensor CND (settler) Dod P4 T7 CMD clemperature PTOO C HUM HUM HUM Error in the Tor i	P2T7C				21.	CMDC temperature Pt100	Ŷ
HUM Front Error in cluster - HUM NUM_INIT Num Num - HUM Num Num - - HUM Num - - - NUM - - -	encrine Encrine Luster encrine Luster encriout Encrine Luster encrine Luster encrine OK? Satus whether command OK? (Yes/No) bool P2 Absolute pressure sensor CMD (setter) mbar F1 STOP Stop of program C F1 T1 OMD temperature Priloi C HUM Min Initializes the Initity sensor EK-H2 C encrine Encrine Encrine Attender Encrine Encrine		P2T7C	P2 T7C	easures the pressure and the	temperature in the CMD settler with the NI-DAQ SC	2345 continuously
Find out cluster Error out cluster 6 0K3 Status whether command 0K7 (YestNo) bod 0K3 Status whether command 0K7 (YestNo) bod 1 P2 Absolute pressure sensor CMD (settler) mbar 1 T7 CMDC temperature PT100 ° 1 Error out cluster ° °	HUM HU For out cluster error out cluster bool P2 Absolute pressure sensor CMD (settler) bool bool P3 Stop of program c c c HUM FUM_JUT HUM CMD center/for the for currand OK7 (ves.No) c c HUM FUM_JUT FUM_INT Model for the for currant of the for c				error in	Error in cluster	57
Display	Display				error out	Error out cluster	I
P2 Absolute pressure sensor CMD (settler) mbar R1ON STOP Stop of program - T7 CMDC temperature Pt100 °C HUM Image: Stop of transmerature Pt100 °C HUM_INIT HUM_INIT End of transmerature Pt100 °C R10 FUM_INIT FUM_INIT °C FUM_INIT FUM_INIT FUM_INIT °C	P2 Absolute pressure sensor CMD (settler) mbar BTUM T1 Stop of program - T1 T1 CMDC temperature Pt100 *C HUM Mul Initializes the humitity sensor EK-H2 *C From in Errorin cluster * *C From in Errorin cluster * * OK1 Staus whether command OK2 (YesNo) bol				0K?	Status whether command OK? (Yes/No)	bool
FTOP Stop of program - T1 T1 CMDC temperature Pt100 *C HUM HUM N MUM *C HUM HUM Environ *C *C	HUM Ti Condensation *C HUM Ti CMDC temperature Pt100 *C HUM Mul Interset in initity sensor EK-HZ Error in cluster *C Image: Sense in the initity sensor EK-HZ Error in cluster *C Image: Sense in the initity sensor EK-HZ Error in cluster *C Image: Sense in the initity sensor EK-HZ Error in cluster *C Image: Sense in the initity sensor EK-HZ Error in cluster *C				P2	Absolute pressure sensor CMD (settler)	mbar
HUM T7 CMDC temperature Pt100 *C HUM HUM Interfaces the humitity sensor EK-H2 error in the form of the temperature error in the form of the temperature HUM_INIT HUM Error in the temperature error in the temperature error in the temperature OK2 Ratus whether command OK2 (YesNo) Dod	HUM T7 CMDC temperature Pt100 $^{\circ}$ C HUM_INIT $^{\mu}$ UM_INIT $^{\mu}$ UM $^{\mu}$ Initializes the humitity sensor EK-H2 $^{\circ}$ C RUM_INIT $^{\mu}$ UM $^{\mu}$ Initializes the humitity sensor EK-H2 $^{\circ}$ C $^{\circ}$ C RUM_INIT $^{\mu}$ UM $^{\mu}$ Initializes the humitity sensor EK-H2 $^{\circ}$ C $^{\circ}$ C RUM_INIT $^{\mu}$ UM $^{\mu}$ Initializes the humitity sensor EK-H2 $^{\circ}$ C RUM_INIT $^{\mu}$ UM $^{\mu}$ Error in cluster $^{\circ}$ C Rum $^{\mu}$ C $^{\mu}$ C $^{\mu}$ C Rum $^{\circ}$ C $^{\circ}$ C $^{\circ}$ C				STOP	Stop of program	Ľ
HUM_INIT HUM_INIT HUM_INIT But initializes the humility sensor EK-H2 error in Error in cluster error out Error out cluster OK? Status whether command OK? (Yes/No) bool	HUM_INIT Intradizes the humitity sensor BK-H2 FIOR IN FIRE the function of the fire of th				2.1.	CMDC temperature Pt100	Ŷ
HUM_INIT Hum limit Initializes the humitity sensor EK-H2 error in Error in cluster error out Error out cluster OK? Status whether command OK? (Yes/No)	HUM_INIT Hum Binr Initializes the humitity sensor EK-H2 error in Error in cluster error out Error in cluster OK? Status whether command OK? (Yes/No)	HUM					
error in Error in cluster error out Error out cluster	error in Error in cluster - error out Error out cluster - error out Cluster - error out Cluster		HUM_INIT	HUM HUM	itializes the humitity sensor	ZK-H2	
error out Error out cluster OK? (YesNo) bool	error out Error out cluster OK? Status whether command OK? (Yes/No) bool			IN	error in	Error in cluster	C.
OK? Status whether command OK? (Yes/No) bool	OK? Status whether command OK? (Yes/No) bool				error out	Error out cluster	à
					OK?	Status whether command OK? (Yes/No)	bool

Device	Name of vi	Icon	Variable		Unit
			ВЧ	Port Bytes at serial port	62
			RBU	Read Buffer	
			RC	Return Count	
			STOP	Stop of program	ŝ
			VRN	VISA Resource Name - for the manual setting of the COM ports	ji ji
	HUM_MEAS	HUM Measures the h	umidity in the CMD.	Balg (one sample)	
		MEAS	error in	Error in cluster	ï
			error out	Error out cluster	ŝ
			HUM	Cluster for humidity measurement; $phi1(\%), T8$ (°C)	℃°,%
			OK?	Status whether command OK? (Yes/No)	bool
			РВ	Port Bytes at serial port	a
			phi1	Relative humidity sensor CMD	%
			RB	Number of counts during the last (1s)	ъž
			RC	Return Count	in i
			stwait	Set time to wait for time out	S
			Т8	CMD settler. Humidity temperature sensor on EK-H2	°.
			twait	Actual time for sub-vi	S Ω
			VRN	VISA Resource Name - for the manual setting of the COM ports	10
	HUM_MEASC	HUM Measures the h	umidity in the CMD .	Balg continuously	
		MEASO	INIT OK	Humidity init vi OK?	bool
			MEAS OK	Humidity sub vi measurement OK?	bool

page 12 of 26

Device	Name of vi	Icon	Variable		Unit
			MEASC OK	Humidity main vi measurement OK?	bool
			phi1	Relative humidity sensor CMD	%
			STOP	Stop of program	E
			T8	CMD settler: Hurnidity temperature sensor on EK-H2	Ŷ
			TIME	Time cluster, TA, T0, ET	a i
			VRN	VISA Resource Name - for the manual setting of the COM ports	ť
SMOT					
	SM_DRV	SM41 Driver of	the Stepper Motor - (coc	le supplied from Hasotech)	
		0BM	bxout	Output parameter SMCard SM41 (HASOTECH)	r.
			cxin	Input parameter1 SMCard SM41 (HASOTECH)	(i
			cxout	Output parameter1 SMCard SM41 (HASOTECH)	C.
			dxin	Input parameter2 SMCard SM41 (HASOTECH)	¢2
			dxout	Output parameter2 SMCard SM41(HASOTECH)	ä
			rgbx	Command code SMCard SM41 (HASOTECH)	īć
	SM_LOGIC	sm Stepper m	otor decision logic		
		Γ	BKSTP?	Is true for back stepping	bool
			CONTR	Continuous or stepwise run of stepper motor (true/false)	bool
			D1	Intermediate result	bool
			D2	Intermediate result	bool
			NROT>NTIME	NROT>NTIME?	bool
			STOPMOTOR?	Is true if one end switch is true	bool
			page 13 of 2	٩	

Device	Name of vi	Icon	Variable		Unit
			SWO	Switch off?	bool
	SM_RS	SM41 Stepper motor c	control		
		00 10 10	MB?	Stepper motor (Card) Busy?	bool
			SMOTOR	Cluster for stepper motor control; SPFA, MB?, STOPIL	E
			SPFA	Speed FActor for Stepper Motor Card (20 slow-80 fast)	12
			START	START button for continuous programs	bool
			STOP	Stop of program	16
			STOPIL	Stop inner loop for the stepper motor application to stop continuous run	bool
	SM_RUN	SM41 Controls the run	n of the Stepper Mot	or(s) with the SM41 Card (from Hasotech)	
		ND4	BKSTP?	Is true for back stepping	bool
			CBSTLP	Count of back step loops	īš
			CONTR	Continuous or stepwise run of stepper motor (true/false)	bool
			MB?	Stepper motor (Card) Busy?	bool
			MOTOR	Motor Type (0-3) =Std	15°
			NROT	N motor ROTations	ία.
			NTIME	Inner Loop was repeated N-TIMEs	E
			OK?	Status whether command OK? (Yes/No)	bool
			SPFA	Speed FActor for Stepper Motor Card (20 slow-80 fast)	âr
			STOP	Stop of program	16
			StopBottom	Control LED for Bottom end switch	ŝī
			STOPIL	Stop inner loop for the stepper motor application to stop continuous run	bool

page 14 of 26

	the of he	SICON.	V artable		Onu
			STOPMOTOR?	Is true if one end switch is true	bool
			StopTop	Control LED for TOP end switch	а
			STPR	Number of STeps Per Rotation	L.
			ttotal	Time total	رم ا
			ttotalm	Total time in milliseconds	SM
			VBALG	Velocity of "BALG"	шdı
			VMOT	Motor control velocity (from SM card) - approximately motor velocity	шdл
SM	RUNC	SM41 Runs continuou	usly the stepper moto	<i>n</i>	
		RUNC	BKSTP?	Is true for back stepping	bool
			CBSTLP	Count of back step loops	Ű.
			CONTR	Continuous or stepwise run of stepper motor (true/false)	bool
			MB?	Stepper motor (Card) Busy?	bool
			MOTOR	Motor Type (0-3) =Std	i2
			NROT	N motor ROTations	а
			NTIME	Inner Loop was repeated N-TIMEs	т
			OK?	Status whether command OK? (Yes/No)	bool
			SPFA	Speed FActor for Stepper Motor Card (20 slow-80 fast)	hí
			START	START button for continuous programs	bool
			STOP	Stop of program	a
			StopBottom	Control LED for Bottom end switch	ï
			STOPIL	Stop inner loop for the stepper motor application to stop continuous run	bood

page 15 of 26

Device	Name of vi	lcon	Variable		Unit
			STOPMOTOR?	Is true if one end switch is true	bool
			StopTop	Control LED for TOP and switch	
			STPR	Number of STeps Per Rotation	Ŀ
			ttotal	Time total	S
			VBALG	Velocity of "BALG"	rpm
			VMOT	Motor control velocity (from SM card) - approximately motor velocity	rpm
	SM_RUNCNE	SM41 Basis stepper mc	tor control program	1	
		BUNne	BKSTP?	Is true for back stepping	bool
			CBSTLP	Count of back step loops	×
			CONTR	Continuous or stepwise run of stepper motor (true/false)	bool
			MB?	Stepper motor (Card) Busy?	bool
			NROT	N motor ROTations	c)
			NTIME	Inner Loop was repeated N-TIMEs	ιά.
			OK?	Status whether command OK? (Yes/No)	bool
			SPFA	Speed FActor for Stepper Motor Card (20 slow-80 fast)	16
			START	START button for continuous programs	bool
			STOP	Stop of program	a'
			StopBottom	Control LED for Bottom end switch	10
			STOPIL	Stop inner loop for the stepper motor application to stop continuous run	bool
			STOPMOTOR?	Is true if one end switch is true	bool
			StopTop	Control LED for TOP and switch	1Å

167/177

page 16 of 26

STRR Number of STeps Per Reason - UBJ VBUG Ventue - VBUG Ventue Ventue - VBUG Ventue Ventue - VBUG Ventue Ventue - - VBUG Ventue Ventue - - VBUG Ventue Nors whether the end switches are pressed - Strand SupBatom Contro LED for Op and switch - SMLST Ventue - - SML Ventue - - SML </th <th>Device</th> <th>Name of vi</th> <th>Icon</th> <th>Variable</th> <th></th> <th>Unit</th>	Device	Name of vi	Icon	Variable		Unit
India India India India India VBALG VBALG Velocity of PALG* Period VBALG Notar solution Notar control velocity (from SM card) - approximately motorwoods) Period SMLSTP Image Start Start Corrol LED for TOP end Sanch Period SMLSTP Image Shows whether the end switcher are presed Corrol LED for TOP end Sanch Period SMRS Image Shows whether the end switcher are presed Corrol LED for TOP end Sanch Period SMRS Image Image Corrol LED for TOP end Sanch Period Period SMRS Image SMRS SMRS SMRS Period Period SMRS Image SMRS SMRS Period Period Period SMRS Image SMRS SMRS Period Period Period SMRS Image SMRS Period Period Period Period SMRS Image Period Period Period Period Period SMRS Image Period Period Period Period Period SMRS Image Period Period Period Period Period<				STPR	Number of STeps Per Rotation	12
VBALG VBALG <td< td=""><td></td><td></td><td></td><td>ttotal</td><td>Time total</td><td>S</td></td<>				ttotal	Time total	S
SM-57P VMOT Moor control velocity (from SM card) - approximately motor velocity pain SM-57P Sign with the rule and switcher and switch Sign with the rule and switcher and switch SMPS SMPS BASIS Sign with the rule and switch Control LED for TOP end switch SMPS MPS BASIS SMPS BASIS And switch Control LED for TOP end switch SMPS MPS BASIS And switch Control LED for TOP end switch SMPS MPS BASIS And switch Control LED for TOP end switch Control LED for TOP end switch SMPS BASIS And switch MPS BASIS And switch Control LED for TOP end switch Control LED for TOP end switch SMPS BASIS And switch MPS BASIS And switch MPS BASIS And switch Control LED for TOP end switch				VBALG	Velocity of "BALG"	шdл
M. STP Town whether the end switches are presed SupExton SupExton Control LED for Datamend switch - SupExton SupExton Control LED for Datamend switch - SNPS A SupExton Control LED for TOP end switch - SNPS A Persure dop impediate (mHDO) - - SNPS MPS_Barisdaten - - - SNPS_BARIS MPS_BARIS - - - SNPS_BARIS - - - - SNPS_BARIS - - - - SNPS_BARIS - - - - SNPS_PARIS - - - SN				VMOT	Motor control velocity (from SM card) - approximately motor velocity	шdı
SopButum SopButum SopPutum end switch · SNPS SopTop Control LED for TOP end switch · · SNPS SNPS SopTop Control LED for TOP end switch · · SNPS SNPS SNPS Statisticated control LED for TOP end switch · · SNPS SNPS SNPS Statisticated control LED for TOP end switch · · SNPS SNPS Statisticated control LED for TOP end switch control LED for TOP end switch · · SNPS SNPS Statisticated control LED for TOP end switch control LED for TOP end switch cm/DD SNPS SNPS SNPS Statisticated control LED for TOP end switch cm/DD AND SNPS Pressure drop excress the bypass office cm/DD entrol out Entrol In Utster control LED for TOP end switch cm/DD AND Model Name (SNPS) MOdel Name (SNPS) cm/DD AND Model Name (SNPS) cm/DD cm/DD AND Model Name (SNPS) cm cm/DD AND Model Name (SNPS) cm cm AND Model Name (SNPS) cm cm AND Conton LED for temperature cm		SM_STP	SW41 Shows whether	the end switches ar	e pressed	
SMPS Stop Top Control LED for TOP end switch . SMPS JAUS MPS JAUS MPS Jausidaten . MPS JAUS MPS Jausidaten . . MPS JAUS MPS JAUS . . MPS JAUS MOSE INTROVENDERStellar . . MPS JAUS MOSE INTROVENDERStellar . . MPS JAUS . . . MPS JAUS . . .			a sta	StopBottom	Control LED for Bottom end switch	а
SMPS_BASIS SMPS_BASIS SMPS_BASIS SMPS_BASIS SMPS_BASIS dp1 Pessure drop impactor (cm+20) cm+20 dp2 Pessure drop across the bypass orfice mm102 dp3 Front out cluster mm102 error out cluster Error out cluster - P1 Absolute pressure (SMPS) sensor) mbar P1 Absolute pressure (SMPS) mbar VP1 Caliner in milliseconds mbar VP1 Sender flow rate SMPS pm				StopTop	Control LED for TOP end switch	i:
MPS_BASIS MPS_Basis/atent cmH20 cmH20 dp1 Pessure drop impactor (rm H20) cmH20 cmH20 dp2 Pessure drop across the bypass orfice mm102 error in Error in cluster - - error out Error in cluster - - RMA Model Name (SMPS) - - RMA RMA - - - RMA - -	SMPS					
April Model Resure drop impactor (rm H2O) Cm H2O dp2 Pressure drop across the bypass orfice mm H2 error ut Error in cluster - error ut Error ut cluster - RMA Model Name (SMPS) - P1 Absolute pressure (SMPS sensor) mber P1 Sensolute pressure (SMPS sensor) mber P1 Absolute pressure (SMPS sensor) mber P1 Sensolute pressure (SMPS sensor) C P1 Sensolute pressure (SMPS sensor) C P2 Sheath flow rate SMPS pm		SMPS_BASIS	SMPS SMPS Basisdate	ua		
dp2 Pressure drop across the bypass orfice mm 102 error in Error in duster - error out Error out cluster - error out Error out cluster - FVS Firmware version of the SMPS - MA Model Name (SMPS) - P1 Absolute pressure (SMPS) sensor) mbar T1 Cabinet temperature - T2 Steath flow temperature - VP1 Total time in milliseconds ms VP2 Sample flow rate SMPS pm			BASIS	dp1	Pressure drop impactor (cm H2O)	cm H2O
error inError in cluster-error outError out cluster-error outError out cluster-FVSFirmware version of the SMPS-MNAModel Name (SMPS)-P1Absolute pressure (SMPS sensor)mbarT1Cabinet pressure (SMPS sensor)mbarT2Sheath flow temperature-VP1Santh flow temperature-VP1Sample flow rate SMPSmbarVP2Sheath flow rate SMPSpm				dp2	Pressure drop across the bypass orifice	mm 120
error outError out cluster-FVSFirmware version of the SMPS-MNAModel Name (SMPS)-MNAModel Name (SMPS)-P1Absolute pressure (SMPS sensor)mbarT1Cabinet preperature-T2Sheath flow temperature-totalitTotal time in milliseconds-VP1Sample flow rate SMPSpmVP2Sheath flow rate SMPSpm				error in	Error in cluster	r
FVSFirmware version of the SMPSMNAModel Name (SMPS)MNAModel Name (SMPS)P1Absolute pressure (SMPS sensor)P1Cabinet temperatureT1Cabinet temperatureT2Sheath flow temperatureP1Total time in millisecondsVP1Sample flow rate SMPSVP2Sheath flow rate SMPSVP3Sheath flow rate SMPS				error out	Error out cluster	ü
MNA Model Name (SMPS) P1 Absolute pressure (SMPS sensor) mbar T1 Cabinet temperature °C T2 Sheath flow temperature °C totalm Total time in milliseconds ms VP1 Sample flow rate SMPS pm VP2 Sheath flow rate SMPS pm				FVS	Firmware version of the SMPS	ŝi.
P1Absolute presure (SMPS sensor)mbarT1Cabinet temperature°CT2Sheath flow temperature°CtotalmTotal time in milliseconds°CVP1Sample flow rate SMPSpmVP2Sheath flow rate SMPSpm				MNA	Model Name (SMPS)	ĩ
T1Cabinet emperature*CT2Sheath flow temperature*CtotalimTotal time in millisecondsmsVP1Sample flow rate SMPSpmVP2Sheath flow rate SMPSpm				Е.	Absolute pressure (SMPS sensor)	mbar
T2Sheath flow temperature*CtotalmTotal time in millisecondsmsVP1Sample flow rate SMPSlpmVP2Sheath flow rate SMPSlpm				Т1	Cabinet temperature	ç
ttotalm Total time in milliseconds ms VP1 Sample flow rate SMPS lpm VP2 Sheath flow rate SMPS lpm				Τ2	Sheath flow temperature	ô
VP1 Sample flow rate SMPS Ipm VP2 Sheath flow rate SMPS Ipm				ttotalm	Total time in milliseconds	sm
VP2 Sheath flow rate SMPS Ipm				VP1	Sample flow rate SMPS	mql
				VP2	Sheath flow rate SMPS	mql
				00 J- 17		

page 17 of 26

Development of the CMD for the coagulation coefficient measurement

Device	Name of vi	Icon	Variable		Unit
			VP3	Bypass flow rate SMPS	mq
	SMPS_BASISC	smps SMPS Basisdat	u		
			dp1	Pressure drop impactor (cm H2O)	cm H2O
			dp2	Pressure drop across the bypass orifice	mm H2O
			error in	Error in cluster	18
			error out	Error out cluster	а
			FVS	Firmware version of the SMPS	18
			MNA	Model Name (SMPS)	а
			P	Absolute pressure (SMPS sensor)	mbar
			STOP	Stop of program	Ű)
			Т1	Cabinet temperature	°.
			Т2	Sheath flow temperature	ç
			ttotalm	Total time in milliseconds	sm
			VP1	Sample flow rate SMPS	md
			VP2	Sheath flow rate SMPS	md
			VP3	Bypass flow rate SMPS	mql
	TINI_SAMS	smps Intializes SMPS	for subsequent me	surement	
			BYPASS-FLOW	Bypass flow stable yes/no	bool
			error in	Error in cluster	т
			error out	Error out cluster	ź
			HIGH-VOLTAGE	HIGH VOLTAGE OK yes/no	bool
			2000 10 of 36		
			nd in or afiph		

I.	Name of vi	Icon	Variable		Ũ
			OK?	Status whether command OK? (Yes/No)	bod
			SFM	Setting blower mode (Dual=D / Single=S)	a
			SHEATH FLOW	Sheath flow stable yes/no	bool
			STOP	Stop of program	3
			SVM	Setting Voltage Mode (A=Analog, P=Panel Control)	т
			ttotal	Time total	S
			VP2	Sheath flow rate SMPS	mql
			VRN	VISA Resource Name - for the manual setting of the COM ports	'n
	SMPS_INITC	4 SelMs	itializes SMPS for subsequent me	asurement	
		INTO	error in	Error in cluster	ŭ
			error out	Error out cluster	ŝ,
			HIGH-VOLTAGE	HIGH VOLTAGE OK yes/no	bool
			OK?	Status whether command OK? (Yes/No)	bool
			SFM	Setting blower mode (Dual=D / Single=S)	а
			SHEATH FLOW	Sheath flow stable yes/no	bool
			SVM	Setting Voltage Mode (A=Analog; P=Panel Control)	ŝ
			ttotal	Time total	្ល
			VP2	Sheath flow rate SMPS	mql
			VP2A	VP2	mql
			VRN	VISA Resource Name - for the manual setting of the COM ports	а
	SMPS_RFL	S SMPS	MPS Read FLags for stable proc	SSS	
		BFU			

page 19 of 26

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Device	Name of vi	Icon	Variable		Unit
entro final Entro final claster = entro final Entro final claster = entro final Entro final claster = HGH-NOLT/AGE O(VesNo) Entro final claster = HGH-NOLT/AGE O(VesNo) Entro final claster = PE Ratis whither command O(V (VesNo) = PE Ratis whither command O(V (VesNo) = NAL RC Return final claster = RC Return final claster = = NAL RC Return final claster = SMAS_NAL Seath final claster = = SMAS_NAL Math me for sub-si = =				BYPASS-FLOW	Bypass flow stable yes/no	bool
encrotic Encrotic totate 0 HGH-VOLTAGE OK (reshto) bod HGH-VOLTAGE OK (reshto) bod OK Satus which or command OKX (reshto) bod PB Prit Bytes at senal point bod PB Prit PB Prit PB bod PB Prit PB Prin Biter of PP bod PB Prin Biter of PP Prin Biter of PP bod PB Prin Biter of PP Prin Biter of PP bod PB Prin Biter of PP Prin Biter of PP bod PB Prin Biter of PP Prin Biter of PP bod PB Prin Biter of PP Pre Biter <t< td=""><td></td><td></td><td></td><td>error in</td><td>Error in cluster</td><td>а</td></t<>				error in	Error in cluster	а
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $				error out	Error out cluster	в
$\begin{tabular}{ c } \hline CM & CM and an economical O(Y) (YeaSN0) & Dod CM (YeaSN0) & CM (YeaSN0) & CM (YeaSN0) & CM (YeaSN0) & Dod CM (YeaSN0) & CM (YeaSN0) & CM (YeaSN0) & Dod CM (YeaSN0) & CM (YeaSN0) &$				HIGH-VOLTAGE	HIGH VOLTAGE OK yesino	bool
PRI PortDynes at serial port - RC Reum Count - RC Reum Count - SHEATHELOW Sheath flow stable yeafno - SHEATHELOW Sheath flow stable yeafno - SMDS_AM Next Actual time for subvi - SMDS_AM Match most at a set and or a stable yeafno - SMDS_AM Match most measurement value for the manual set and of the COM points - SMDS_AM Match most measurement value for the manual set and of the COM points - SMDS_AM Match most measurement value for the manual set and of the COM points - SMDS_AM Match most measure of the manual set and of the COM points - SMDS_AM Match most measure of the manual set and of the COM points - SMDS_AM Match most measure of the manual set and of the COM points - SMDS_AM Match most measure of the manual set and of the COM points - SMDS_AM Match most measure of the manual set and of the COM points - CMD Demoter of Particle Most measure of with SWPS - Match measure of the manual set and of the measure of with SWPS - Match measure of the cond demoter of Particle Most measure of with SWPS - Match measure of the cond demoter of Particle Most measure of				OK?	Status whether command OK? (Yes/No)	bool
RC Rum Count - SHEATH ELOW Sheath flow stable yeario Execution SHEATH ELOW Sheath flow stable yeario Execution Weit Actual time for stable Execution Weit NSA Resource Name - for the manual setting of the COM ports - SMPS_AMF Mask Macual time for stable S SMPS_AMF Mask Mask Resource Name - for the manual setting of the COM ports - SMPS_AMF Mask Mask Resource Name - for the manual setting of the COM ports - SMPS_AMF Mask Resource Name - for the manual setting of the COM ports - - SMPS_AMF Mask Resource Name - for the manual setting of the COM ports - - SMPS_AMF EFS Baneter of Particle MANNum that could be measured with SMPS mmHz PMMAK Demoker of Particle MANnum that could be measured with SMPS mmHz PMMAK Demoker of Particle MANnum that could be measured with SMPS mmHz FMMAK Demoker of Particle MANnum that could be measured with SMPS mmHz FMMAK Error of C				PB	Port Bytes at serial port	Ð
SHEATH ELOW Sheath How stable yeario bod NMP Meit Actual time for sub-id s NPS_RAN VRN VRA Resource Name- for the manual setting of the COM ports s SMPS_RAN Stads most measurement values of the Status is CK? (resNub) bod s SMPS_RAN Stads most measurement values of the Status is CK? (resNub) bod s SMPS_RAN Stads most measurement values of the Status is CK? (resNub) bod s SMPS_RAN Stads most measurement values of the COM ports s s SMPS_RAN Stads most measurement values of the COM ports s s SMPS_RAN Stads most measurement values of the COM ports s s SMPS_RAN Stads most measurement values of the COM ports s s SMPS_RAN Bod Dameter of Particle MAXimum that could be measured with SMPS mm2 CMM Dameter of Particle MAXimum that could be measured with SMPS mm2 mm2 DPM Dameter of Particle MAXimum that could be measured with SMPS mm2 mm2 Ender Dameter of Particle MAXimum that could be measured with SMPS mm2 mm2 Ender				RC	Return Count	ũ.
Institution Actual time for subvi s SMPS_AMF VRN VISA Resource Name - for the manual seting of the COM ports - SMPS_AMF Import VISA Resource Name - for the manual seting of the COM ports - SMPS_AMF Import BFS Bypass Flow Status is OK? (Yoe Noi) Dod Import Import DP Dameer of Particle Import Import PP Parener of Particle Import Import Import PP Dameer of Particle Import Import Import DP Demeer of Particle Import Import Import PPMIN Demeer of Particle MAXimum that could be measured with SMPS Import Import PPMIN Demeer of Particle MINimum that could be measured with SMPS Import Import PPMIN Demeer of Particle MINimum that could be measured with SMPS Import Import PPMIN Demeer of Particle MINimum that could be measured with SMPS Import Import PPMIN Demeer of Particle MINimum that could be measured with SMPS Import Import PPMIN Demeer of Particle MINImum that could be measured with SMPS Import Import PPMIN Demeer of Particle MINImum that could be measured with SMPS Import <tr< td=""><td></td><td></td><td></td><td>SHEATH FLOW</td><td>Sheath flow stable yes/no</td><td>bool</td></tr<>				SHEATH FLOW	Sheath flow stable yes/no	bool
VRN VISN VISN Reader or France VISN Reader or France <th< td=""><td></td><td></td><td></td><td>twait</td><td>Actual time for sub-vi</td><td>S</td></th<>				twait	Actual time for sub-vi	S
SMPS_RMV Teads most measurement values of file SMPS BFS Bypass Flow Status is O(Y (Yes/No) bod DP DP Demeter of Particle mm Cm120 DPMAX Dameter of Particle mm DPMAX Dameter of Particle mm mm Cm120 DPMAX Dameter of Particle MAXimum that could be measured with SMPS mm Cm120 DPMAX Dameter of Particle MAXimum that could be measured with SMPS mm Cm120 DPMAX Dameter of Particle MAXimum that could be measured with SMPS mm Cm120 DPMAX Dameter of Particle MAXimum that could be measured with SMPS mm Cm120 DPMAX Dameter of Particle MAXimum that could be measured with SMPS mm Cm120 Dameter of Particle MAXimum that could be measured with SMPS mm mm/30(Cm120 Dameter of Particle MAXimum that could be measured with SMPS mm mm/30(mm/30(FMB Deremeter of Particle MAXimum that could be measured with SMPS mm/30(mm/30(mm/30(mm/30(Cm120 Dameter of Particle MAXimum that could be measured with SMPS mm/30(mm/30(mm/30(<t< td=""><td></td><td></td><td></td><td>VRN</td><td>VISA Resource Name - for the manual setting of the COM ports</td><td>а</td></t<>				VRN	VISA Resource Name - for the manual setting of the COM ports	а
BFS Bypass Flow Status is OK? (Yes/No) bod DP DP Dameter of Particle m DP Pessure drop impactor (rm H2O) cm H2 DPMIN Demeter of Particle MAXImum that could be measured with SMPS m DPMIN Dameter of Particle MINimum that could be measured with SMPS m Cm20/ DPMIN Dameter of Particle MINimum that could be measured with SMPS m Cm20/ DPMIN Dameter of Particle MINimum that could be measured with SMPS m End Demeter of Particle MINimum that could be measured with SMPS m PMIN Dameter of Particle MINImum that could be measured with SMPS m PMIN Demeter of Particle MINImum that could be measured with SMPS m PMIN Demeter of Particle MINImum that could be measured with SMPS m PMIN Demeter of Particle MINImum that could be measured with SMPS m PMIN Demeter of Particle MINIMUM that could be measured with SMPS m PMIN Demeter of Particle MINIMUM m PMIN Demeter of Particle		SMPS_RMV	smps Reads most me	tsurement values of	the SMPS	
DP Dameter of Particle nm dp1 Pressure drop impactor (cm H2O) cm H2 DPMAX Demeter of Particle MAXimum that could be measured with SMPS nm DPMIN Dameter of Particle MINimum that could be measured with SMPS nm DPMIN Dameter of Particle MINimum that could be measured with SMPS nm DPMIN Dameter of Particle MINimum that could be measured with SMPS nm dm1 EMB Becritical MoBility from SMPS nm error in Error in cluster cm/20(cm/20(error out Error in cluster cm/20(cm/20(HVS High Voltage Status stable? (Yes/No) pool P1 Absolute pressure (SMPS sensor) mbar			BMV	BFS	Bypass Flow Status is OK? (Yes/No)	bool
dp1 Pressure drop impactor (cm H2O) cm H2 DPMAX Dameter of Particle M1Nimum that could be measured with SMPS mm DPMIN Diameter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm EMB Denoter of Particle M1Nimum that could be measured with SMPS mm Particle M1N Denoter of Particle M1Nimum that could be measured with SMPS mm Particle M1N Denoter of Particle M1N mm Particle M1N Denoter of Particle M1N mm Particle M1N <				DP	Diameter of Particle	Ш
DPMAX Dameter of Particle MAXimum that could be measured with SMPS mm DPMIN Diameter of Particle MINimum that could be measured with SMPS mm EMB Demoter of Particle MINimum that could be measured with SMPS mm EMB Electrical MoBility from SMPS mm error in Error in cluster cm ² 0 ¹ HVS Error out Error out cluster - PVS High Voltage Status stable? (Yes/No) bool P1 Absolute pressure (SMPS sensor) mbar				dp1	Pressure drop impactor (cm H2O)	cm H2(
DPMIN Dameter of Particle MINimum that could be measured with SMPS nm EMB EMB Electrical MoBility from SMPS nm error in Error in cluster error int error int error out Error in cluster error out cluster - HVS High Voltage Status stable? (Yes/No) bool P1 Absolute pressure (SMPS sensor) mbar				DPMAX	Diameter of Particle MAXimum that could be measured with SMPS	ш
EMB Electrical MoBility from SMPS cm^2XI error in Error in cluster - error out Error out cluster - HVS High Voltage Status stable? (Yes/No) bool P1 Absolute pressure (SMPS sensor) mbar				DPMIN	Diameter of Particle MINimum that could be measured with SMPS	ш
error in Error in cluster - error out Error out cluster - HVS High Voltage Status stable? (Yes/No) bool P1 Absolute pressure (SMPS sensor) mbar				EMB	Electrical MoBility from SMPS	cm^2()
error out Error out cluster - HVS High Voltage Status stable? (Yes/No) bool P1 Absolute pressure (SMPS sensor) mbar				error in	Error in cluster	ŭ
HVS High Voltage Status stable? (Yes/No) bool P1 Absolute pressure (SMPS sensor) mbar				error out	Error out cluster	a
P1 Absolute pressure (SMPS sensor) mbar				HVS	High Voltage Status stable? (Yes/No)	bool
				P1	Absolute pressure (SMPS sensor)	mbar
				page 20 of 26		

Device	Name of vi	Icon	Variable		Und
			SDMA	Selected DMA (4-0) 4=Model 8081	63
			SFM	Setting blower mode (Dual=D / Single=S)	а
			SFS	Sheath Flow Status is OK (Yes/No)	bool
			SGAS	Selected Gas Type(5.0)	15
			SIMP	Selected Impactor (3-0): (2) 0.0457cm, (1) 0.0508cm, (0) 0.0710cm	а
			SMPS DATA	Cluster for SMPS Data, VP1 (lpm), VP2 (lpm), P1 (mbar), T2 (°C), T3 (°C)	10
			SVM	Setting Voltage Mode (A=Analog; P=Panel Control)	a
			Τ2	Sheath flow temperature	Ŷ
			Τ3	Bypass flow temperature	ç
			ttotalm	Total time in milliseconds	sm
			VOLT	DMA VOLTage	>
			VP1	Sample flow rate SMPS	mq
			VP2	Sheath flow rate SMPS	mq
			VP3	Bypass flow rate SMPS	mql
	SMPS_SCANC_C	PCC SMPS Control ov	er SMPS, CPC, ASP,	4SF (sub vi for CMDC_Measurement)	
		SCAN	ASF	Cluster for Vp4s (sccm/rnin), OK? (bool)	37
			ASP	Cluster for cp3 (Pa), T6 (°C), OK? (bool)	Pa, °C, I
			00	Cumulative Counts since the last measurement from the CPC	16
			СТ	Cumulative Time of the last measurement from the CPC	S
			DeltaDp	Diameter difference in nm for scanning intervals	ш
			DP	Diameter of Particle	mu

page 21 of 26

	•				
Device	une of vi	Icon	Variable		Unit
			DP	Diameter of Particle	Æ
			DP Time	Time for scan	ĩ
			DPMAX	Diameter of Particle MAXimum that could be measured with SMPS	ш
			DPMIN	Diameter of Particle MINimum that could be measured with SMPS	E
			error in	Error in cluster	c
			error out	Error out cluster	ũ
			INIT	Initial flag	bool
			z	Number of scan intervals	ı
			NA	Number of actual SMPS scans	ĩ
			NSDIST	Flow chart particle concentration versus diameter (raw data)	ŝ
			Ntot	Total particle counts since last measurement	#
			PSS	Particle Size Spacing (type: linear/logarithmic)	ı
			RD	Actual display concentration of CPC	#/cm^3
			RD	Actual display concentration of CPC	#/cm^3
			scs	SCan Status OK? (Yes/No)	bool
			scs	SCan Status OK? (Yes/No)	bool
			SCT	SCan Time in seconds. Scan time for one size distribution measurement	s
			SCTA	Actual SCan Tim e	Ś
			SDP	Dp measurement OK	bool
			SDR	Select particle Diameter Range: AUTO/MANUAL (1/0)	bool
			SM	Boolean array of optional measurements when false the measurement is contined: (1)SMPS Scan (2) RD (3) Vhas (4) rin3	bool array
			SMPS DATA	outset for SMPS Data; VP1 (Ipm), VP2 (Ipm), P1 (mbar), T2 (°C), T3	5

173/177

Development of the CMD for the coagulation coefficient measurement

page 22 of 26

Device	Name of vi	TCON	A tu tuble		ORT
			SPD	Select Particle Diameter command OK? (Yes/No)	bool
			SRD	Rd measurement OK	bool
			SRD	Rd measurement OK	bool
			STOP	Stop of program	20
			STOPIL	Stop inner loop for the stepper motor application to stop continuous run	bool
			SVP	Vp measurement OK	bool
			ttotal	Time total	ы
	SMPS_SCXX	SMPS Control o	over SMPS, CPC, ASP, 1	ISF	
		23	ASF	Cluster for Vp4s (sccm/min), OK? (bool)	a
			ASP	Cluster for dp3 (Pa); T6 (°C), OK? (bool)	Pa, °C, b
			DPMAXA	Actual DPMAX of SMPS	шш
			DPMINA	Actual DPMIN of SMPS	шш
			z	Number of scan intervals	nit.
			N&NA	N & NA	a
			ΥA	Number of actual SMPS scans	т
			NSDIST	How chart particle concentration versus diameter (raw data)	si.
			ßM	Boolean array of optional measurements when false the measurement is omitted: (1)SMPS Scan. (2) RD, (3) Vo4s. (4) db3	bool array
			SMPS	Cluster for SMPS Control; DPMIN, DPMAX, DP, RD, SCT, SCTA, PSS, dmin, PS7, SCS, SDR	Ű.
			SMPS DATA	Cluster for SMPS Data, VP1 (lpm), VP2 (lpm), P1 (mbar), T2 (°C), T3 (°C)	ā
			SNOT	State machine states	ъ
			STOPIL	Ston inner loon for the stenner motor annification to ston continuous run	poq

174/177

page 23 of 26

SMPS_SF	sdivis Wz			
		SMPS Set Flow Mode -> Sing	ie or Dual Biower	
	SEM	error in	Error in cluster	10
		error out	Error out cluster	ũ
		OK?	Status whether command OK? (Yes/No)	bool
		РВ	Port Bytes at serial port	i?
		RC	Return Count	,
		SFM	Setting blower mode (Dual=D / Single=S)	г
		STOP	Stop of program	sa.
		twait	Actual time for sub-vi	S
		VRN	VISA Resource Name - for the manual setting of the COM ports	ť.
IS SAMS		SMPS Set Particle Diameter	> needed for SMPS_SCAN	
		DP	Diameter of Particle	ш
		OK?	Status whether command OK? (Yes/No)	bool
		PB	Port Bytes at serial port	E)
		RC	Return Count	a
		stwait	Set time to wait for time out	S
		twait	Actual time for sub-vi	S
		VRN	VISA Resource Name - for the manual setting of the COM ports	a
35 SAMS	SC SC	SMPS Set sheath flow rate		
	80	error in	Error in cluster	ï
		error out.	Error out cluster	ίζ.
		pade 24 r	rt 26	

Device	Name of vi	Icon	Variable		Unit
			OK?	Status whether command OK? (Yes/No)	bool
			ВВ	Port Bytes at serial port	а
			RC	Return Count	с
			STOP	Stop of program	20
			VP2	Sheath flow rate SMPS	md
			VRN	VISA Resource Name - for the manual setting of the COM ports	ŭ
	WAS SAWS	SMPS SMPS Set Vo	ltage Mode> Choic	e between analog and panel control	
		MAS	error in	Error in cluster	jā.
			error out	Error out cluster	x
			OK?	Status whether command OK? (Yes/No)	bool
			ВЧ	Port Bytes at serial port	ŝi.
			RC	Return Count	x
			STOP	Stop of program	É?
			SVM	Setting Voltage Mode (A≂Analog: P=Panel Control)	а
			VRN	VISA Resource Name - for the manual setting of the COM ports	в
VALVE					
	STATES	States of the	valves		
			Path cluster	Cluster for path settings: Path, V1-8	ı:
			PATHS	Name of path	a
			STATE	Text of the actual valve state of the CMD - Pathx	a.
			V1	State of valve 1	bool
			00 JC 100		
			page 25 UD		

Device	Name of vi	Icon	Variable		Unit
			V1-8	Array of valves V1-8 indicating their state:0=off (closed) 1=on (opened)	bool array
			V2	State of valve 2	bool
			V3	State of valve 3	bool
			V4	State of valve 4	bool
			V5	State of valve 5	bool
			V6	State of valve 6	bool
			77	State of valve 7	bool
			V8	State of valve 8	bool
	STATESC	States States of the val	ves continuously		
			Path cluster	Cluster for path settings: Path, V1-8	1 ²
			STOP	Stop of program	ŝ,
			٧٦	State of valve 1	bool
			V1-8	Array of valves V1-8 indicating their state:0=off (closed) 1=on (opened)	bool array
			V2	State of valve 2	bool
			V3	State of valve 3	bool
			V4	State of valve 4	bool
			V5	State of valve 5	bool
			V6	State of valve 6	bool
			٨٦	State of valve 7	bool
			V8	State of valve 8	bool

page 26 of 26